できるように作られた因数分解 - 質問解決D.B.(データベース)

できるように作られた因数分解

問題文全文(内容文):
$ 36x^4+24x^3+67x^2+24x+36$
これを因数分解せよ.
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 36x^4+24x^3+67x^2+24x+36$
これを因数分解せよ.
投稿日:2022.06.16

<関連動画>

福田の数学〜中央大学2021年経済学部第1問(1)〜2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$(1)次の2次方程式において,1つの解が$x=\dfrac{3}{2}-i$であるとき,
実数$a,b$の値を求めよ.ただし,$i$は虚数単位とする.
$-x^2+ax+b=0$

2021中央大経済学部過去問
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第4問〜3次関数の増減と3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$自然数$a,b$に対し、3次関数$f_{a,b}(x),g_{a,b}(x)$を
$f_{a,b}(x)=x^3+3ax^2+3bx+8$
$g_{a,b}(x)=8x^3+3bx^2+3ax+1$
で定める。次の問いに答えよ。
(1)次の条件$(\textrm{I})(\textrm{II})$の両方を満たす自然数の組(a,b)
で$a+b \leqq 9$となるものを全て求めよ。
$(\textrm{I})f_{a,b}(x)$が極値をもつ
$(\textrm{II})g_{a,b}(x)$が極値をもつ
(2)3次方程式$f_{a,b}(x)=0$の3つの解が$\alpha,\beta,\gamma$であるとき
3次方程式$g_{a,b}(x)=0$の解を$\alpha,\beta,\gamma$で表せ。
(3)次の条件$(\textrm{III})$を満たす自然数の組$(a,b)$で$a+b \leqq 9$となるものを全て求めよ。
$(\textrm{III})$3次方程式$f_{a,b}(x)=0$が相異なる3つの実数解をもつ。

2022早稲田大学教育学部過去問
この動画を見る 

宮城教育大・多項式の剰余

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P(x),Q(x)$はxの実数係数多項式である.
$P(x),Q(x)$が$x^2+1$で割り切れるなら$P(x),Q(x)$の少なくとも一方は$x^2+1$で割り切れることを証明せよ.

(1)$P(i)=0$ならば$P(x)$は$x^2+1$で割り切れることを示せ.

宮城教育大過去問
この動画を見る 

福田の数学〜多変数の方程式はこう扱え〜早稲田大学2023年社会科学部第2問〜3変数の不定方程式の整数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 定数$m$に対して$x$,$y$,$z$の方程式
$xyz$+$x$+$y$+$z$=$xy$+$yz$+$zx$+$m$ ...①
を考える。次の問いに答えよ。
(1)$m$=1のとき①式を満たす実数$x$,$y$,$z$の組を全て求めよ。
(2)$m$=5のとき①式を満たす整数$x$,$y$,$z$の組を全て求めよ。ただし、
$x$≦$y$≦$z$ とする。
(3)$xyz$=$x$+$y$+$z$ を満たす整数$x$,$y$,$z$の組を全て求めよ。ただし、
0<$x$≦$y$≦$z$ とする。
この動画を見る 

福田の数学〜京都大学2023年理系第2問〜空間の位置ベクトルと直線のベクトル方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#空間ベクトル#剰余の定理・因数定理・組み立て除法と高次方程式#空間ベクトル#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 空間内の4点O,A,B,Cは同一平面上にないとする。点D,P,Qを次のように定める。点Dは$\overrightarrow{OD}$=$\overrightarrow{OA}$+$2\overrightarrow{OB}$+$3\overrightarrow{OC}$を満たし、点Pは線分OAを1:2に内分し、点Qは線分OBの中点である。さらに、直線OD上の点Rを、直線QRと直線PCが交点を持つように定める。このとき、線分ORの長さと線分RDの長さの比OR:RDを求めよ。

2023京都大学理系過去問
この動画を見る 
PAGE TOP