【理数個別の過去問解説】2021年度東京大学 数学 理科第1問(2)/文科第3問(2)解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2021年度東京大学 数学 理科第1問(2)/文科第3問(2)解説

問題文全文(内容文):
東京大学2021年度理科大問1(文科大問3)(2)
a,bを実数とする。座標平面上の放物線
$C:y=x^2+ax+b$
は放物線$y=-x^2$と2つの共有点を持ち、一方の共有点のx座標は$-1<x<0$を満たし、他方の共有点のx座標は$0<x<1$を満たす。
(1)点(a,b)のとりうる範囲を座標平面上に図示せよ。
(2)放物線Cの通りうる範囲を座標平面上に図示せよ。
チャプター:

0:00 オープニング
0:05 導入
0:37 注目する文字を変える
2:58 グラフから条件を考える
6:49 条件から領域を図示

単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学2021年度理科大問1(文科大問3)(2)
a,bを実数とする。座標平面上の放物線
$C:y=x^2+ax+b$
は放物線$y=-x^2$と2つの共有点を持ち、一方の共有点のx座標は$-1<x<0$を満たし、他方の共有点のx座標は$0<x<1$を満たす。
(1)点(a,b)のとりうる範囲を座標平面上に図示せよ。
(2)放物線Cの通りうる範囲を座標平面上に図示せよ。
投稿日:2021.04.06

<関連動画>

嵐の方程式 5-1=0 をオイラーの公式を使って よさまつが証明するよ

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#式と証明#恒等式・等式・不等式の証明#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式 説明動画です
この動画を見る 

【数Ⅱ】図形と方程式:奇跡的な軌跡の解法② 2点からの距離の比が2:1の軌跡は?アポロニウスの円

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(-2,0),B(1,0)からの距離の比が2:1である点Pの軌跡を求めよ。
この動画を見る 

07兵庫県教員採用試験(数学:7番 三角関数の積分)

アイキャッチ画像
単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$ $k\gt 0,y=\sin x,y=k\ \cos x$
直線$x=0,x=\dfrac{\pi}{2}$で囲まれた部分の面積$S$を$k$を用いて表せ.

図は動画内参照
この動画を見る 

【高校数学】 数Ⅱ-170 定積分で表された関数①

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\int_2^x (3t^2-4t-1) dt$をxの式で表そう。また、そのxの関数を微分しよう。

②$\int_x^a f(t)dt=x^2+2x-3$を満たす$f(x)$と定数aの値を求めよう。
この動画を見る 

福田の数学〜大阪大学2023年理系第1問〜不等式の証明と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#微分とその応用#数列の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ nを2以上の自然数とする。
(1)0≦x≦1のとき、次の不等式が成り立つことを示せ。
$\frac{1}{2}x^2$≦$\displaystyle(-1)^n\left\{\frac{1}{x+1}-1-\sum\_{k=2}^n(-x)^{k-1}\right\}$≦$x^n-\frac{1}{2}x^{n+1}$
(2)$a_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$ とするとき、次の極限値を求めよ。
$\displaystyle\lim_{n \to \infty}(-1)^nn(a_n-\log 2)$

2023大阪大学理系過去問
この動画を見る 
PAGE TOP