整数問題・フェルマーの小定理の利用 - 質問解決D.B.(データベース)

整数問題・フェルマーの小定理の利用

問題文全文(内容文):
$2023^4+1$を素因数分解したときの2以外の素因数を1つ挙げよ.

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2023^4+1$を素因数分解したときの2以外の素因数を1つ挙げよ.

投稿日:2023.04.11

<関連動画>

京都大 整数問題 高校数学 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'96京都大学過去問題
m,nは自然数で、m<nを満たすものとする。
$m^n+1,n^m+1$がともに10の倍数となるm,nを1組与えよ。
この動画を見る 

ガウス記号 B 2021 明治学院【改】

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
実数aに対してaを超えない最大の整数を[a]で表す。
[$\sqrt n$]=2となる整数nはいくつ?

2021明治学院高等学校
この動画を見る 

福田の数学〜早稲田大学2021年商学部第3問〜正の約数の総和が奇数になる条件

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 次の設問に答えよ。\\
(1)225の全ての正の約数の和を求めよ。\\
\\
(2)2021以下の正の整数で、すべての正の\\
約数の和が奇数であるものの個数を求めよ。
\end{eqnarray}

2021早稲田大学商学部過去問
この動画を見る 

津田塾大 基本対称式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は自然数である.
$abc,ab+bc+ca$,$a+b+c$がすべて3の倍数なら,$a,b,c$はすべて3の倍数であることを示せ.

2016津田塾大過去問
この動画を見る 

整数問題 慶應義塾大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$は自然数である.これを解け.
$a^3=b^2,c^3=d^2,c-a=9$

2020慶應大過去問
この動画を見る 
PAGE TOP