【数Ⅲ】【微分とその応用】関数の最大と最小7 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】関数の最大と最小7 ※問題文は概要欄

問題文全文(内容文):
次の関数の最大値、最小値を求めよ。
(1) $ \displaystyle y= \frac{x-1}{x^2+1}$
(2) $y=x- \sqrt{x^2-1}$
(3) $y= \sqrt{x^2+1}+ \sqrt{(x-3)^2+4}$
(4) $y=|x|e^x$
チャプター:

0:00 オープニング
0:28 (1)の解説
2:25 (2)の解説、無理数が登場した時の注意点
4:00 極限を考える
5:12 (3)の解説
6:38 (4)の解説

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の最大値、最小値を求めよ。
(1) $ \displaystyle y= \frac{x-1}{x^2+1}$
(2) $y=x- \sqrt{x^2-1}$
(3) $y= \sqrt{x^2+1}+ \sqrt{(x-3)^2+4}$
(4) $y=|x|e^x$
投稿日:2025.03.01

<関連動画>

【高校数学】数Ⅲ-111 接線と法線④(媒介変数表示編)

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#接線と法線・平均値の定理#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の媒介変数で表された曲線において、
()内に示された曲線上の点における接線の方程式を求めよ。

①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=2\cos\theta \\
y=\sin\theta
\end{array}
\right.
\end{eqnarray}$$\quad \left(\theta=\dfrac{\pi}{3}\right)$

②①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\cos^3 \theta \\
y=\sin^3 \theta
\end{array}
\right.
\end{eqnarray}$$\quad \left(\theta=\dfrac{\pi}{4}\right)$
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第5問〜対数関数の極限と変曲点とグラフの接線

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}\ a \gt 0$を定数とし、
$f(x)=x^a\log x$とする。以下の問いに答えよ。
(1)$\lim_{x \to +0}f(x)$を求めよ。必要ならば$\lim_{s \to \infty}se^{-s}=0$が成り立つことは
証明なしに用いてよい。
(2)曲線$y=f(x)$の変曲点がx軸上に存在するときのaの値を求めよ。
さらにそのとき$y=f(x)$のグラフの概形を描け。
(3)$t \gt 0$に対して、曲線$y=f(x)$上の点(t,f(t))における接線をlとする。
lがy軸の負の部分と交わるための$(a,t)$の条件を求め、その条件の表す領域を
a-t平面上に図示せよ。

2022早稲田大学人間科学部過去問
この動画を見る 

【数Ⅲ-158】定積分で表された関数①

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数①)
Q.次の関数を$x$について微分せよ。ただし$a$は定数とする。

①$\int_a^x \frac{t}{1+e^{2t}}dt$

➁$\int_0^{x} (x-t)e^{2t}dt$

③$\int_0^{2x+1} \frac{1}{t^2+1}dt$
この動画を見る 

【数Ⅲ】【微分とその応用】色々な関数の微分2 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
対数微分法により次の関数を微分せよ。ただし、aは定数とする。

y= (x+1)²/((x+2)³(x+3)⁴)
以下、略

次の関数を微分せよ。ただし x>0 とする。
y= x^sinx
以下、略

lim_(k→0) (1+k)^(1/k)=e を用いて、次の極限を求めよ。
lim_(x→0) ((log(1+x)/x)
以下、略
この動画を見る 

福田のわかった数学〜高校3年生理系059〜微分(4)陰関数の微分

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(4) 陰関数の微分
$\frac{x^2}{4}-\frac{y^2}{9}=1$について$\frac{dy}{dx},\frac{d^2y}{dx^2}$を
$x$と$y$を用いて表せ。ただし、$y\neq 0$とする。
この動画を見る 
PAGE TOP