【数Ⅲ】【微分とその応用】関数の最大と最小7 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】関数の最大と最小7 ※問題文は概要欄

問題文全文(内容文):
次の関数の最大値、最小値を求めよ。
(1) $ \displaystyle y= \frac{x-1}{x^2+1}$
(2) $y=x- \sqrt{x^2-1}$
(3) $y= \sqrt{x^2+1}+ \sqrt{(x-3)^2+4}$
(4) $y=|x|e^x$
チャプター:

0:00 オープニング
0:28 (1)の解説
2:25 (2)の解説、無理数が登場した時の注意点
4:00 極限を考える
5:12 (3)の解説
6:38 (4)の解説

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の最大値、最小値を求めよ。
(1) $ \displaystyle y= \frac{x-1}{x^2+1}$
(2) $y=x- \sqrt{x^2-1}$
(3) $y= \sqrt{x^2+1}+ \sqrt{(x-3)^2+4}$
(4) $y=|x|e^x$
投稿日:2025.03.01

<関連動画>

福田の数学〜慶應義塾大学2022年商学部第1問(2)〜三角不等式の一般解

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)xを変数とする2次方程式$x^2+(2\sqrt2\cos\theta)x+\sqrt2\sin\theta=0$が
異なる2つの実数解をもつような実数$\theta$の範囲は$\boxed{\ \ ア\ \ }$である。

2022慶應義塾大学商学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題052〜東京慈恵会医科大学2019年度医学部第2問〜2曲線の相接と囲まれた部分の面積とその極限

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $a,b$は定数で$a \gt 1$とする。2つの曲線$C_1:y=\displaystyle\frac{3e^x-1}{e^x+1}$,$C_2:y=\displaystyle\frac{e^x}{a^2}+b$が共有点Pをもち、点Pにおいて共通の接線をもつとする。このとき、次の問いに答えよ。
(1)$C_1$の凹凸および変曲点を調べ、$C_1$の概形を描け。
(2)点Pの座標と$b$を$a$で表せ。
(3)$C_1$,$C_2$と$y$軸で囲まれた部分の面積$S(a)$を$a$で表せ。また、極限値$\displaystyle\lim_{a \to \infty}S(a)$を求めよ。
ただし、必要ならば$\displaystyle\lim_{x \to \infty}\frac{\log x}{x}= 0$であることを用いてよい。

2019東京慈恵会医科大学医学部過去問
この動画を見る 

【数Ⅲ】微分法の応用:接線と法線 放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線 $y^2=8x$ 上の点P($1,-2\sqrt2$)における接線の方程式を求めよう。
この動画を見る 

【数Ⅲ】【微分とその応用】関数の最大と最小5 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) 関数 $y=xe^{-x^2+x}$の極値を求めよ。
(2) $2$次関数 $f(x)=ax^2+bx+c$に対して、$F(x)=xe^{f(x)}$で定義された関数$y=F(x)$が極値を持つための、定数$a,b,c$についての必要十分条件を求めよ。
この動画を見る 

【数Ⅲ】【微分とその応用】平均値の定理の利用3 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
k、αは定数、関数f(x)は微分可能であるとする。
lim[x→∞]f'(x)=αのとき、lim[x→∞]{f(x+k)-f(x)}を求めよ。
この動画を見る 
PAGE TOP