福田のわかった数学〜高校3年生理系066〜微分(11)定義に従った微分(3) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系066〜微分(11)定義に従った微分(3)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(11) 定義に従って(3)\\
f'(a)が存在するとき、\\
\lim_{x \to a}\frac{a^2f(x)-x^2f(a)}{x-a}\\
をa,f(a),f'(a)で表せ。
\end{eqnarray}
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(11) 定義に従って(3)\\
f'(a)が存在するとき、\\
\lim_{x \to a}\frac{a^2f(x)-x^2f(a)}{x-a}\\
をa,f(a),f'(a)で表せ。
\end{eqnarray}
投稿日:2021.08.21

<関連動画>

福田のわかった数学〜高校3年生理系070〜接線(2)媒介変数表示の接線

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 接線(2) 媒介変数表示の接線\\
\left\{
\begin{array}{1}
x=\theta-\sin\theta\\
y=1-\cos\theta
\end{array}
\right.             \\
\\
で表される曲線の\theta=\frac{3\pi}{2}のときの点Pにおける接線を求めよ。
\end{eqnarray}
この動画を見る 

指数不等式

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\left(\dfrac{5}{3}\right)^{\frac{x^2+x-3}{x+1}}\leqq \dfrac{2}{3}・\left(\dfrac{5}{2}\right)^{x-\left(\frac{3}{x+1}\right)}$
この動画を見る 

岩手大 滋賀大 三次関数と直線 3次方程式整数解 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
$f(x)=x^3-3x-1$
$f(x)=3ax+15$の解の個数

滋賀大学過去問題
n自然数、P素数
$x^3+nx^2-(5-n)x+P=0$
の1つの解が自然数である。この方程式を解け
この動画を見る 

【数学Ⅲ/微分】三角関数の微分②(積の微分、2倍角の公式など)

アイキャッチ画像
単元: #三角関数#微分法#数学(高校生)#数Ⅲ
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数を微分せよ。
(1)
$y=\displaystyle \frac{1}{\sin^2x}$

(2)
$y=x\sin3x$

(3)
$y=\sin x\cos x$
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第5問〜絶対値の付いた関数と面積の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} tを0 \leqq t \leqq \frac{\pi}{2}を満たす定数とする。関数\\
f(x)=|\sin x-\sin t|  (0 \leqq x \leqq \pi)\\
について、以下の問いに答えよ。\\
(1)t=\frac{\pi}{6}のときy=f(x) (0 \leqq x \leqq \pi)のグラフを描け。\\
\\
(2)y=f(x) (0 \leqq x \leqq \pi)のグラフとx軸、y軸および直線x=\pi\\
で囲まれた図形の面積をSとする。Sをtを用いて表せ。\\
\\
(3)tが\leqq t \leqq \frac{\pi}{2}の範囲を動くときのSの最大値と最小値を求めよ。
\end{eqnarray}

2021青山学院大学理工学部過去問
この動画を見る 
PAGE TOP