福田の数学〜早稲田大学2022年人間科学部第3問〜空間における面対称な点と折れ線の最小 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年人間科学部第3問〜空間における面対称な点と折れ線の最小

問題文全文(内容文):
${\large\boxed{3}}$正四面体$OABC$の辺$BC$の中点をM、辺OCを1:2に内分する点をNとする。
点Nと平面OABに関して対称な点をPとする。このとき、
$\overrightarrow{ OP }=\frac{\boxed{\ \ ア\ \ }\ \overrightarrow{ OA }+\boxed{\ \ イ\ \ }\ \overrightarrow{ OB }+\boxed{\ \ ウ\ \ }\ \overrightarrow{ OC }}{\boxed{\ \ エ\ \ }}$
である。
次に、点Qは平面OAB上の点で$|\overrightarrow{ MQ }|+|\overrightarrow{ QN }|$が最小になる点とする。
このとき、
$\overrightarrow{ OQ }=\frac{\boxed{\ \ オ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ カ\ \ }\ \overrightarrow{ OB }}{\boxed{\ \ キ\ \ }}$
である。

2022早稲田大学人間科学部過去問
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}$正四面体$OABC$の辺$BC$の中点をM、辺OCを1:2に内分する点をNとする。
点Nと平面OABに関して対称な点をPとする。このとき、
$\overrightarrow{ OP }=\frac{\boxed{\ \ ア\ \ }\ \overrightarrow{ OA }+\boxed{\ \ イ\ \ }\ \overrightarrow{ OB }+\boxed{\ \ ウ\ \ }\ \overrightarrow{ OC }}{\boxed{\ \ エ\ \ }}$
である。
次に、点Qは平面OAB上の点で$|\overrightarrow{ MQ }|+|\overrightarrow{ QN }|$が最小になる点とする。
このとき、
$\overrightarrow{ OQ }=\frac{\boxed{\ \ オ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ カ\ \ }\ \overrightarrow{ OB }}{\boxed{\ \ キ\ \ }}$
である。

2022早稲田大学人間科学部過去問
投稿日:2022.08.03

<関連動画>

福田の数学・入試問題解説〜東北大学2022年文系第4問〜空間における四面体の高さと体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ xyz空間内の点O(0,0,0),A(1,\sqrt2,\sqrt3),B(-\sqrt3,0,1),C(\sqrt6,-\sqrt3,\sqrt2)\\
を頂点とする四面体OABCを考える。3点OABを含む平面からの距離が1の点\\
のうち、点Oに最も近く、x座標が正のものをHとする。\\
(1)Hの座標を求めよ。\\
(2)3点OABを含む平面と点Cの距離を求めよ。\\
(3)四面体OABCの体積を求めよ。
\end{eqnarray}

2022東北大学文系過去問
この動画を見る 

福田の数学〜立教大学2023年理学部第2問〜ベクトルの共面条件と共線条件

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<$k$1とする。座標空間内の四面体OABCについて、線分ACの中点をD、線分BCの中点をE、線分DEを1:2に内分する点をPとする。また、
線分OPを$k$:1-$k$に内分する点をQとし、Rを$\overrightarrow{CR}$=$l\overrightarrow{CQ}$を満たす点とする。
$\overrightarrow{a}$=$\overrightarrow{OA}$, $\overrightarrow{b}$=$\overrightarrow{OB}$, $\overrightarrow{c}$=$\overrightarrow{OC}$とおいたとき、次の問いに答えよ。
(1)$\overrightarrow{OD}$, $\overrightarrow{OE}$, $\overrightarrow{OP}$を$\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$を用いて表せ。
(2)$\overrightarrow{OR}$を$\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$, $k$, $l$を用いて表せ。
(3)Rが平面OAB上にあるとき、$l$を$k$を用いて表せ。
(4)線分OAの中点をF、線分OBの中点をGとする。Rが線分FG上にあるときの$k$の値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第5問〜ベクトルの空間図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 空間の2点OとAは|\overrightarrow{ OA }|=2を満たすとし、点Aを通り\overrightarrow{ OA }に直交する平面をHとする。\\
平面H上の三角形ABCは、正の実数aに対し\\
|\overrightarrow{ AB }|=2a, |\overrightarrow{ AC }|=3a, \overrightarrow{ AB }・\overrightarrow{ AC }=2a^2\\
を満たすとする。ただし、\overrightarrow{ u }・\overrightarrow{ v }はベクトル\overrightarrow{ u }と\overrightarrow{ v }の内積を表す。\\
(1)\overrightarrow{ OA }・\overrightarrow{ OB }の値を求めよ。\\
さらに、線分ABの平面H上にある垂直二等分線をl、線分ACを2:1に内分する点を\\
通り、線分ACに直交するH上の直線をmとする。また、lとmの交点をPとする。\\
(2)ベクトル\overrightarrow{ OP }を、実数\alpha,\beta,\gammaを用いて\overrightarrow{ OP }=\alpha\overrightarrow{ OA }+\beta\overrightarrow{ OB }+\gamma\overrightarrow{ OC }と表すとき、\\
\alpha,\beta,\gammaの値をそれぞれ求めよ。\\
(3)空間の点Qは2\overrightarrow{ OA }+\overrightarrow{ OQ }=\overrightarrow{ 0 }を満たすとする。直線PQが、\\
点Oを中心とする半径2の球Sに接しているとき、|\overrightarrow{ AP }|の値およびaの値を求めよ。\\
さらに、直線l上の点Rを、直線QRがSに接し、Pとは異なる点とする。このとき、\\
\triangle APRの面積を求めよ。
\end{eqnarray}

2021慶應義塾大学経済学部過去問
この動画を見る 

【数C】ベクトルの基本⑳空間における平面上の点を係数から求める

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(2,0,0),B(0,1,0),C(0,0,-2)が与えられたとき、原点Oから平面ABCに下ろした垂線の足を点Hとする。このとき、点Hの座標と線分OHの長さを求めよ
この動画を見る 

福田の数学〜京都大学2023年理系第2問〜空間の位置ベクトルと直線のベクトル方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#空間ベクトル#剰余の定理・因数定理・組み立て除法と高次方程式#空間ベクトル#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 空間内の4点O,A,B,Cは同一平面上にないとする。点D,P,Qを次のように定める。点Dは$\overrightarrow{OD}$=$\overrightarrow{OA}$+$2\overrightarrow{OB}$+$3\overrightarrow{OC}$を満たし、点Pは線分OAを1:2に内分し、点Qは線分OBの中点である。さらに、直線OD上の点Rを、直線QRと直線PCが交点を持つように定める。このとき、線分ORの長さと線分RDの長さの比OR:RDを求めよ。

2023京都大学理系過去問
この動画を見る 
PAGE TOP