福田の数学〜早稲田大学2023年商学部第1問(4)〜空間内の格子点から正三角形ができる確率 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2023年商学部第1問(4)〜空間内の格子点から正三角形ができる確率

問題文全文(内容文):
$\Large{\boxed{1}}$
(4)次の操作(*)を考える。
(*)1個のさいころを3回続けて投げ、出た目を順に$a_1$, $a_2$, $a_3$とする。
$a_1$, $a_2$, $a_3$を3で割った余りをそれぞれ$r_1$, $r_2$, $r_3$とするとき、座標空間の点($r_1$, $r_2$, $r_3$)を定める。
この操作(*)を3回続けて行い、定まる点を順に$A_1$, $A_2$, $A_3$とする。このとき、$A_1$, $A_2$, $A_3$が正三角形の異なる3頂点となる確率は$\boxed{\ \ エ\ \ }$である。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(4)次の操作(*)を考える。
(*)1個のさいころを3回続けて投げ、出た目を順に$a_1$, $a_2$, $a_3$とする。
$a_1$, $a_2$, $a_3$を3で割った余りをそれぞれ$r_1$, $r_2$, $r_3$とするとき、座標空間の点($r_1$, $r_2$, $r_3$)を定める。
この操作(*)を3回続けて行い、定まる点を順に$A_1$, $A_2$, $A_3$とする。このとき、$A_1$, $A_2$, $A_3$が正三角形の異なる3頂点となる確率は$\boxed{\ \ エ\ \ }$である。
投稿日:2023.10.24

<関連動画>

サイコロの確率の問題!注意点があります【数学 入試問題】【九州大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
4個のサイコロを同時に投げるとき,出る目すべての積を$X$とする。

(1)$X$が25の倍数になる確率を求めよ。
(2)$X$が4の倍数になる確率を求めよ。
(3)$X$が100の倍数になる確率を求めよ。

九州大過去問
この動画を見る 

福田の数学〜千葉大学2024年理系第4問(3)〜コンビネーションに関する不等式の評価

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正の整数$n,p,q$が$p > q$かつ$_p\mathrm{C}_2+_q\mathrm{C}_2=n$を満たすとする。$_m\mathrm{C}_2 \leqq n$となる最大の整数$m$を求めよ。
この動画を見る 

大阪教育大 場合の数 自然数を和で表す Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$n$をそれより小さい自然数の和で表す。
$2=1+1$の1通り
$3=1+1+1,1+2,2+1$の3通り
次の場合それぞれ何通りか。

(1)4
(2)5
(3)$n$

出典:2002年大阪教育大学 過去問
この動画を見る 

福田の数学〜立教大学2023年理学部第1問(5)〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)表の出る確率が$\frac{2}{3}$、裏の出る確率が$\frac{1}{3}$のコインを投げて、表が出たら+1点を加え、裏が出たら-1点を加える。というルールのゲームを行う。
0点から初めて5回コインを投げ終わった時、得点が3点以上となる確率は$\boxed{\ \ オ\ \ }$である。

2023立教大学理学部過去問
この動画を見る 

桐朋 整数問題

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,bをそれぞれ1ケタの自然数とする。$2^a \times 3^b$が72の倍数とならないa,bの組は何通り?

桐朋高等学校
この動画を見る 
PAGE TOP