【高校数学】 数B-61 等差数列とその和④ - 質問解決D.B.(データベース)

【高校数学】 数B-61 等差数列とその和④

問題文全文(内容文):
初項$a$,公差$d$,末項$\ell$,項数$n$の等差数列の和を$S_n$とすると
$S_n=①=②$

次の等差数列の和を求めよう.

③初項-10,末項45,項数8

④初項64,公差-5,項数16

⑤$20,14,・・・-58$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
初項$a$,公差$d$,末項$\ell$,項数$n$の等差数列の和を$S_n$とすると
$S_n=①=②$

次の等差数列の和を求めよう.

③初項-10,末項45,項数8

④初項64,公差-5,項数16

⑤$20,14,・・・-58$
投稿日:2016.01.25

<関連動画>

福田の数学〜上智大学2023年TEAP利用型理系第1問(3)〜連立漸化式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (3)$a_1$=0, $b_1$=6とし、
$a_{n+1}$=$\displaystyle\frac{a_n+b_n}{2}$, $b_{n+1}$=$a_n$ ($n$≧1)
で定まる$a_n$, $b_n$を用いて、平面上の点$P_n$($a_n$, $b_n$)($n$=1,2,3,...)を定める。
(i)点$P_n$は常に直線$y$=$\boxed{\ \ ウ\ \ }x$+$\boxed{\ \ エ\ \ }$上にある。
(ii)$n$を限りなく大きくするとき、点$P_n$は点$\left(\boxed{\ \ オ\ \ }, \boxed{\ \ カ\ \ }\right)$に限りなく近づく。
この動画を見る 

福田のおもしろ数学138〜シグマ計算

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\sum_{k=1}^nk(k!)$ を求めよ。
この動画を見る 

九州大 Σの公式証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010九州大学過去問題
以下の問いに答えよ。証明
(1)和$1+2+3+\cdots+n$をnの多項式で表せ
(2)和$1^2+2^2+3^2+\cdots+n^2$をnの多項式で表せ
(3)和$1^3+2^3+3^3+\cdots+n^3$をnの多項式で表せ
この動画を見る 

福田の数学〜青山学院大学2024理工学部第4問〜3項間漸化式の解法

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
初項が $1$、第10項が $3$ である数列 $\{a_n\}$ が
\begin{equation*}
a_{n+2}-3a_{n+1}+2a_n+1=0 \quad (n=1,2,3,\ldots)
\end{equation*}
を満たしている。$b_n=a_{n+1}-a_n \ (n=1,2,3,\ldots)$ とおくとき、以下の問いに答えよ。
$(1)$ $b_{n+1}$ を $b_n$ を用いて表せ。
$(2)$ $b_n$ を $n$ と $b_1$ を用いて表せ。
$(3)$ $b_1$ を求めよ。
$(4)$ 数列 $\{a_n\}$ の一般項を求めよ。
この動画を見る 

福田の入試問題解説〜北海道大学2022年文系第2問〜数列の一般項の最小と部分和の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\left\{a_n\right\}$を$a_1=-15$および
$a_{n+1}=a_n+\frac{n}{5}-2  (n=1,2,3,\ldots)$
を満たす数列とする。
(1)$a_n$が最小となる自然数nを全て求めよ。
(2)$\left\{a_n\right\}$の一般項を求めよ。
(3)$\sum_{k=1}^na_k$が最小となる自然数nを全て求めよ。

2022北海道大学文系過去問
この動画を見る 
PAGE TOP