福田の1.5倍速演習〜合格する重要問題082〜北海道大学2018年度理系第5問〜不等式の証明と面積 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題082〜北海道大学2018年度理系第5問〜不等式の証明と面積

問題文全文(内容文):
$\Large\boxed{5}$ 2つの関数
f(x)=$\cos x$, g(x)=$\displaystyle\sqrt{\frac{\pi^2}{2}-x^2-\frac{\pi}{2}}$
がある。
(1)0≦x≦$\frac{\pi}{2}$のとき、不等式$\frac{2}{\pi}x$≦$\sin x$が成り立つことを示せ。
(2)0≦x≦$\frac{\pi}{2}$のとき、不等式g(x)≦f(x)が成り立つことを示せ。
(3)0≦x≦$\frac{\pi}{2}$の範囲において、2つの曲線y=f(x), y=g(x)およびy軸が囲む部分の面積を求めよ。

2018北海道大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 2つの関数
f(x)=$\cos x$, g(x)=$\displaystyle\sqrt{\frac{\pi^2}{2}-x^2-\frac{\pi}{2}}$
がある。
(1)0≦x≦$\frac{\pi}{2}$のとき、不等式$\frac{2}{\pi}x$≦$\sin x$が成り立つことを示せ。
(2)0≦x≦$\frac{\pi}{2}$のとき、不等式g(x)≦f(x)が成り立つことを示せ。
(3)0≦x≦$\frac{\pi}{2}$の範囲において、2つの曲線y=f(x), y=g(x)およびy軸が囲む部分の面積を求めよ。

2018北海道大学理系過去問
投稿日:2023.02.16

<関連動画>

2022藤田医科大の簡単な問題 メインはn個の相加相乗平均の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x\gt 0$において$\dfrac{x}{2}+\dfrac{2}{x^2}$の最小値を求めよ.

2022藤田医科大過去問
この動画を見る 

ネイピア数の分数式がスッキリきれいな数字に

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\dfrac{e}{\sqrt e}・\dfrac{\sqrt[3]{e}}{\sqrt[4]{e}}・\dfrac{\sqrt[5]{e}}{\sqrt[6]{e}}・・・・・・=?$
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2022}$を$x^6-x^5+x^4-x^3+x^2-x+1$で割った余りを求めよ.
この動画を見る 

【短時間でマスター!!】二項定理と多項定理を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学2B
二項定理・多項定理
$(3x-1)^7$を展開したときに$x^2$の係数は?
$(x^2-2y+3z)^6$の$x^3y^2z$の係数は?
この動画を見る 

気持ちいい別解あり!これ解ける?【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a,b,c$を正の数とするとき、不等式
$2\left( -\frac{a+b}{2}-\sqrt{ab}\right)≦3\left(\frac{a+b+c}{2}-\sqrt[3]{abc}\right)$
を証明せよ。

また、等号が成立するのはどんな場合か。

京都大過去問
この動画を見る 
PAGE TOP