問題文全文(内容文):
2011京都大学過去問題
実数aが変化するとき、3次関数$y= x^3-4x^2+6x$、直線$y=x+a$のグラフの交点の個数はどのように変化するか。
aの値によって分類せよ。
2011京都大学過去問題
実数aが変化するとき、3次関数$y= x^3-4x^2+6x$、直線$y=x+a$のグラフの交点の個数はどのように変化するか。
aの値によって分類せよ。
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2011京都大学過去問題
実数aが変化するとき、3次関数$y= x^3-4x^2+6x$、直線$y=x+a$のグラフの交点の個数はどのように変化するか。
aの値によって分類せよ。
2011京都大学過去問題
実数aが変化するとき、3次関数$y= x^3-4x^2+6x$、直線$y=x+a$のグラフの交点の個数はどのように変化するか。
aの値によって分類せよ。
投稿日:2018.04.25