数学「大学入試良問集」【13−12 数列と二項定理】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【13−12 数列と二項定理】を宇宙一わかりやすく

問題文全文(内容文):
次の問いに答えよ。
(1)
$k$を2以上の自然数とする。
$x$の整式$(1+x)^k$において$x^2$の係数を求めよ。

(2)
$n$を2以上の自然数とする。
$x$の整式$\displaystyle \sum_{k=1}^n(1+x)^k$において$x^2$の係数を$a_n$とする。
  (ⅰ)$a_n$を求めよ。
  (ⅱ)$S_n=\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$k$を2以上の自然数とする。
$x$の整式$(1+x)^k$において$x^2$の係数を求めよ。

(2)
$n$を2以上の自然数とする。
$x$の整式$\displaystyle \sum_{k=1}^n(1+x)^k$において$x^2$の係数を$a_n$とする。
  (ⅰ)$a_n$を求めよ。
  (ⅱ)$S_n=\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。
投稿日:2021.06.10

<関連動画>

福田の数学〜0と1の間に整数は存在しないなんて当たり前〜東京大学2018年文系第2問〜数列の増減と整数となる条件

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列$a_{ 1},a_{ 2 }$,・・・を$a_{ n }=\displaystyle \frac{{}_2n \mathrm{ C }_n}{n!}$(n=1,2,・・・)で定める。
(1)$a_{ 7 }$と1の大小を調べよ。
(2)$n \geqq 2$とする。$\displaystyle \frac{a_{ n }}{a_{ n-1}}<1$を満たすnの範囲を求めよ。
(3)$a_{ n }$が整数となる$n \geqq 1$を全て求めよ。

2018東京大学文過去問
この動画を見る 

【高校数学】数列の基礎・言葉の確認~知らないとヤバい知識~ 3-1【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1,4,9,16,25…この一般項を求めよ。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(4)〜合成関数と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(4)数列$\left\{a_n\right\},\left\{b_n\right\}$(ただし$a_1\neq 0$かつ$a_1\neq 1$)に対して1次関数
$f_n(x)=a_nx+b_n (n=1,2,\ldots)$
を定める。また、$\alpha=a_1, \beta=b_1$とおく。すべての自然数nに対して
$(f_n◦f_1)(x)=f_{n+1}(x)$
が成り立つとき、数列$\left\{a_n\right\},\left\{b_n\right\}$の一般項を$\alpha$と$\beta$の式で表すと
$a_n=\boxed{\ \ ク\ \ }, b_n=\boxed{\ \ ケ\ \ }$
となる。

2022慶應義塾大学医学部過去問
この動画を見る 

大学入試問題#520「これは綺麗や~~」 東北大学(2023) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=S$:実数
$(n+2)a_{n+1}=n\ a_n+2$

(1)
$a_n$を求めよ

(2)
$\displaystyle \sum_{n=1}^m a_n=0$のとき$S$を$m$で表せ

出典:2023年東北大学 入試問題
この動画を見る 

【数B】【数列】漸化式1 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列
$\{a_n\}$ の一般項を求めよ。
(1) $a_1 = 1$, $a_{n+1} = \frac{a_n}{a_n + 1}$
(2)$a_1 = \frac{1}{2}$, $a_{n+1} = \frac{a_n}{2a_n + 3}$
この動画を見る 
PAGE TOP