【数Ⅲ-176】速度と道のり①(直線運動編) - 質問解決D.B.(データベース)

【数Ⅲ-176】速度と道のり①(直線運動編)

問題文全文(内容文):
数Ⅲ(速度と道のり①・直線運動編)

ポイント
数直線上を運動する点Pの速度$v$が時刻$t$の関数$v=f(t)$で表されるとき、$t=a$から$t=b$までのPの位置の変化$S$、Pの道のり$l$は

位置の変化$S=$ ①
道のり$l=$ ➁

Q
$x$軸上を運動する点の、時刻$t$における位置を$f(t)$、速度を$v(t)$とすると、$v(t)=4t-t^2$と表されるという。
$f(1)=5$のとき、次の問いに答えよ。
③時刻$t$における位置$f(t)$を求めよ。
④$t=2$から$t=5$までに点が動いた道のりを求めよ。
単元: #微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と道のり①・直線運動編)

ポイント
数直線上を運動する点Pの速度$v$が時刻$t$の関数$v=f(t)$で表されるとき、$t=a$から$t=b$までのPの位置の変化$S$、Pの道のり$l$は

位置の変化$S=$ ①
道のり$l=$ ➁

Q
$x$軸上を運動する点の、時刻$t$における位置を$f(t)$、速度を$v(t)$とすると、$v(t)=4t-t^2$と表されるという。
$f(1)=5$のとき、次の問いに答えよ。
③時刻$t$における位置$f(t)$を求めよ。
④$t=2$から$t=5$までに点が動いた道のりを求めよ。
投稿日:2020.11.25

<関連動画>

福田のわかった数学〜高校3年生理系058〜微分(3)媒介変数表示の微分

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数列$\textrm{III}$ 微分(3) 媒介変数表示
$x=a(\theta-\sin\theta), y=a(1-\cos\theta)$のとき、$\frac{dy}{dx},\frac{d^2y}{dx^2}$を$\theta$で表せ。
この動画を見る 

【微分の定義は?!】微分の定義をイメージで解説しました!【数学III】

アイキャッチ画像
単元: #微分とその応用#微分法#速度と近似式#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
微分の定義をイメージで解説します。
この動画を見る 

19奈良県教員採用試験(数学:高校1番 微分)

アイキャッチ画像
単元: #微分とその応用#微分法#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
高1⃣類題
$f(x)=x \quad sinx がx=aで微分可能を示せ$
この動画を見る 

二階微分>0 なぜ下に凸・指数関数の微分 名古屋大の問題の補足

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
指数関数の微分の補足 解説動画です
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第4問〜接線と面積計算

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 関数$f(x)$を
$f(x)$=$x^2(x-3)$
で定める。以下に答えなさい。
(1)関数$f(x)$は$x$=$\boxed{\ \ ト\ \ }$で極小値$\boxed{\ \ ナ\ \ }$をとる。
(2)曲線$y$=$f(x)$ を$C$とする。点A(0,1)から曲線$C$へは2本の接線が引ける。
そのうち、傾きが正の接線を$l$とし、傾きが負の接線を$m$とするとき、直線$l$の方程式は$y$=$\boxed{\ \ ニ\ \ }$であり、直線$m$の方程式は$y$=$\boxed{\ \ ヌ\ \ }$である。
(3)曲線$C$と直線$l$の接点Pの$x$座標は$\boxed{\ \ ネ\ \ }$である。また、曲線$C$と直線$l$は2つの共有点をもつが、点Pとは異なる共有点Qの$x$座標は$\boxed{\ \ ノ\ \ }$である。さらに、曲線$C$と直線$l$で囲まれた図形の面積は$\boxed{\ \ ハ\ \ }$である。
この動画を見る 
PAGE TOP