福田の1.5倍速演習〜合格する重要問題022〜一橋大学2016年度文系数学第5問〜ベクトルの絶対値の比の範囲 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題022〜一橋大学2016年度文系数学第5問〜ベクトルの絶対値の比の範囲

問題文全文(内容文):
平面上の2つのベクトル$\overrightarrow{ a }$と$\overrightarrow{ b }$は零ベクトルではなく、$\overrightarrow{ a }$と$\overrightarrow{ b }$のなす角度は
60°である。このとき
$r=\frac{|\overrightarrow{ a }+2\overrightarrow{ b }|}{|2\overrightarrow{ a }+\overrightarrow{ b }}$
のとりうる値の範囲を求めよ。

2016一橋大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上のベクトル#解と判別式・解と係数の関係#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面上の2つのベクトル$\overrightarrow{ a }$と$\overrightarrow{ b }$は零ベクトルではなく、$\overrightarrow{ a }$と$\overrightarrow{ b }$のなす角度は
60°である。このとき
$r=\frac{|\overrightarrow{ a }+2\overrightarrow{ b }|}{|2\overrightarrow{ a }+\overrightarrow{ b }}$
のとりうる値の範囲を求めよ。

2016一橋大学文系過去問
投稿日:2022.12.07

<関連動画>

【高校数学】 数B-26 ベクトル方程式①

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
この動画を見る 

【高校数学】 数B-7 ベクトルの分解

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎正六角形ABCDEFにおいて、$\overrightarrow{ AB }=\overrightarrow{ a },\overrightarrow{ BC }=\overrightarrow{ b }$とするとき、次のベクトルを$\overrightarrow{ a }=\overrightarrow{ b }$を用いて表そう。

①$\overrightarrow{ AF }$

②$\overrightarrow{ BE }$

③$\overrightarrow{ DA }$

④$\overrightarrow{ DF }$

※図は動画内参照
この動画を見る 

【数C】【平面上のベクトル】位置ベクトル ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
$\triangle \rm{ABC}$の重心を$\rm{G}$とするとき、この平面上の任意の点$\rm{P}$に対して、等式$\rm{\overrightarrow{AP}+\overrightarrow{BP}-2\overrightarrow{CP}=3\overrightarrow{GC}}$が成り立つことを証明せよ。

問題2
$\triangle \rm{ABC}$と点$\rm{P}$に対して、次の等式が成り立つとき、点$\rm{P}$の位置をいえ。
(1) $\rm{\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{AB}}$
(2)$\rm{\overrightarrow{AP}+\overrightarrow{BP}+\overrightarrow{CP}=\vec{0}} $
(3)$\rm{\overrightarrow{PA}+\overrightarrow{PC}=\overrightarrow{AC}}$

問題3
$\triangle \rm{ABC}$と点$\rm{P}$に対して、等式 $\rm{5\overrightarrow{AP}+4\overrightarrow{BP}+3\overrightarrow{CP}=\vec{0}}$が成り立っている。
(1)点$\rm{P}$の位置をいえ。
(2)$\triangle \rm{PBC}:\triangle \rm{PCA}:\triangle \rm{PAB}$を求めよ。
この動画を見る 

18東京都教員採用試験(数学:ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
1⃣-(3)
$\overrightarrow{ OH }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$で表せ
*図は動画内参照
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(1)〜空間のベクトル方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)$\overrightarrow{ a }=(\sqrt3,0,1)$とする。
空間ベクトル$\overrightarrow{ b }, \overrightarrow{ c }$はともに大きさが1であり、
$\overrightarrow{ a }∟\overrightarrow{ b }, \overrightarrow{ b }∟\overrightarrow{ c }, \overrightarrow{ c }∟\overrightarrow{ a }$とする。
$(\textrm{i})p,q,r$を実数とし、$\overrightarrow{ x }=p\overrightarrow{ a }+q\overrightarrow{ b }+r\overrightarrow{ c }$とするとき、
内積$\overrightarrow{ x }・\overrightarrow{ a }$と$\overrightarrow{ x }$の大きさ$|\overrightarrow{ x }|$をp,q,rを用いて表すと、
$\overrightarrow{ x }・\overrightarrow{ a }=\boxed{\ \ ア\ \ },|\ \overrightarrow{ x } \ |=\boxed{\ \ イ\ \ }$である。
$(\textrm{ii})(5,0,z)=s\overrightarrow{ a }+(\cos\theta)\overrightarrow{ b }+(\sin\theta)\overrightarrow{ c }$を満たす実数$s,\theta$が存在するような
実数zは2個あるが、それらを全て求めると$z=\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP