3つの整数の最大公約数!解けますか?【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

3つの整数の最大公約数!解けますか?【京都大学】【数学 入試問題】

問題文全文(内容文):
$n$を自然数とする。3つの整数$n^2+2,n^4+2,n^6+2$の最大公約数$A_n$を求めよ。

京都大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を自然数とする。3つの整数$n^2+2,n^4+2,n^6+2$の最大公約数$A_n$を求めよ。

京都大過去問
投稿日:2022.10.22

<関連動画>

素因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$64000001$を素因数分解すると3つの素因数分解をもつ.
$pqr(p \lt q \lt r)q$の値を求めよ.
この動画を見る 

同志社大 最大公約数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{32}+1$と$2^{16}+1$の最大公約数を求めよ.

2002同志社大過去問
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第4問〜円周上の点の移動と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
円周上に15個の点$P_0,P_1,\ldots,P_{14}$が反時計回りに順に並んでいる。最初、
点$P_0$に石がある。さいころを投げて偶数の目が出たら石を反時計回りに5個先
の点に移動させ、奇数の目が出たら石を時計回りに3個先の点に移動させる。
この操作を繰り返す。例えば、石が点$P_5$にあるとき、さいころを投げて6の目が
出たら石を点$P_{10}$に移動させる。次に、5の目が出たら点$P_{10}$にある石を
点$P_7$に移動させる。

(1)さいころを5回投げて、偶数の目が$\boxed{\ \ ア\ \ }$回、奇数の目が$\boxed{\ \ イ\ \ }$回
出れば、点$P_0$にある石を点$P_1$に移動させることができる。このとき、
$x=\boxed{\ \ ア\ \ },$ $y=\boxed{\ \ イ\ \ }$は、不定方程式$5x-3y=1$の整数解に
なっている。

(2)不定方程式
$5x-3y=8$ $\cdots$①
の全ての整数解$x,y$は、$k$を整数として

$x=\boxed{\ \ ア\ \ }×8+\boxed{\ \ ウ\ \ }\ k,$ $y=\boxed{\ \ イ\ \ }×8+\boxed{\ \ エ\ \ }\ k$

と表される。①の整数解$x,y$の中で、$0 \leqq y \lt \boxed{\ \ エ\ \ }$を満たすものは

$x=\boxed{\ \ オ\ \ },$ $y=\boxed{\ \ カ\ \ }$

である。したがって、さいころを$\boxed{\ \ キ\ \ }$回投げて、偶数の目が$\boxed{\ \ オ\ \ }$回、
奇数の目が$\boxed{\ \ カ\ \ }$回出れば、点$P_0$にある石を点$P_8$に移動させることが
できる。

(3)(2)において、さいころを$\boxed{\ \ キ\ \ }$回より少ない回数だけ投げて、点$P_0$
にある石を点$P_8$に移動させることはできないだろうか。

(*)石を反時計回りまたは時計回りに15個先の点に移動させると
元の点に戻る。

(*)に注意すると、偶数の目が$\boxed{\ \ ク\ \ }$回、奇数の目が$\boxed{\ \ ケ\ \ }$回出れば、
さいころを投げる回数が$\boxed{\ \ コ\ \ }$回で、点$P_0$にある石を点$P_8$に移動させる
ことができる。このとき、$\boxed{\ \ コ\ \ } \lt \boxed{\ \ キ\ \ }$ である。

(4)点$P_1,P_2,\cdots,P_{14}$のうちから点を一つ選び、点$P_0$にある石をさいころを
何回か投げてその点に移動させる。そのために必要となる、さいころを
投げる最小回数を考える。例えば、さいころを1回投げて点$P_0$にある石を
点$P_2$へ移動させることはできないが、さいころを2回投げて偶数の目と
奇数の目が1回ずつ出れば、点$P_0$にある石を点$P_2$へ移動させることができる。
したがって、点$P_2$を選んだ場合には、この最小回数は2回である。
点$P_1,P_2,\cdots,P_{14}$のうち、この最小回数が最も大きいのは点$\boxed{\boxed{\ \ サ\ \ }}$であり、
その最小回数は$\boxed{\ \ シ\ \ }$回である。

$\boxed{\boxed{\ \ サ\ \ }}$の解答群
⓪$P_{10}$
①$P_{11}$
②$P_{12}$
③$P_{13}$
④$P_{14}$

2021共通テスト過去問
この動画を見る 

岩手大 滋賀大 三次関数と直線 3次方程式整数解 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
$f(x)=x^3-3x-1$
$f(x)=3ax+15$の解の個数

滋賀大学過去問題
n自然数、P素数
$x^3+nx^2-(5-n)x+P=0$
の1つの解が自然数である。この方程式を解け
この動画を見る 

英国数学オリンピック 高校入試レベルの問題

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべてのxで次の式が成り立つ整数(a,b,c)をすべて求めよ.
$(x-10)(x-a)+1=(x+a)(x+c)$

英国数学オリンピック過去問
この動画を見る 
PAGE TOP