2023久留米大(医)確率漸化式 - 質問解決D.B.(データベース)

2023久留米大(医)確率漸化式

問題文全文(内容文):
無作為に1個取り出して戻すを繰り返す.
n回取り出したときの数の合計が3の倍数になる確率$P_{n}$を求めよ.

久留米大(医)過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
無作為に1個取り出して戻すを繰り返す.
n回取り出したときの数の合計が3の倍数になる確率$P_{n}$を求めよ.

久留米大(医)過去問
投稿日:2023.03.11

<関連動画>

3つの解法・漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=8$
$a_{n+1}=3a_n+4^n$
これを解け.
この動画を見る 

漸化式・対数の利用の融合問題 福井大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=1,a_{n+1}=\dfrac{a_n}{a_n+3},a_{11}$は小数点以下0でない数が初めて表れるのは小数第何位?

福井大過去問
この動画を見る 

信州大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=\displaystyle \frac{1}{12}$

$a_{n+1}=\displaystyle \frac{a_{n}}{1+6(n+1)(n+2)a_{n}}$

(1)
一般項を求めよ

(2)
$\displaystyle \sum_{k=1}^n a_k$

出典:2010年信州大学 過去問
この動画を見る 

広島県立 特殊な漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#県立広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島県立大学過去問題
各項が正の数列{$a_n$}
初項~第n項の和を$S_n$
$a_1^3+a_2^3+a_3^3+\cdots+a_n^3=2S_n^2$が成り立つ
(1)$a_n^2+2a_n=4S_n$が成り立つことを示せ。
(2)一般項$a_n$と$S_n$を求めよ。
この動画を見る 

階乗に関する問題!!

アイキャッチ画像
単元: #数学(中学生)#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$x! = \frac{(5!)!}{5!}$のときx=?

川端高校
この動画を見る 
PAGE TOP