【数学模試解説】2022年度1月 第4回 高2K塾記述模試 全問解説 - 質問解決D.B.(データベース)

【数学模試解説】2022年度1月 第4回 高2K塾記述模試 全問解説

問題文全文(内容文):
大問1:小問集合
(1)$AB=5,BC=7,CA=6$の三角形$ABC$がある。$\cos\angle BAC$の値と三角形$ABC$の外接円の半径を求めよ。
(2)$a$は実数の定数とする。$x$の2次方程式$x^2-2ax+5a-6=0$が異なる2つの正の解をもつようなaの値の範囲を求めよ。
(3)方程式$x^3-4x^2+8=0$を解け。
(4)$m$は実数の定数とする。座標平面における原点$O$と直線$y=mx+m+2$の距離が2より大きくなるようなmの値の範囲を求めよ。
(5)実数$x$が、$2^x+2^{-x}=3$を満たしている。$4^x+4^{-x}$の値を求めよ。
(6)方程式$\log_4(5x-1)=log_2(2x-1)$を解け。
大問2:三角関数
(1)$\sin\dfrac{\pi}{12},\cos\dfrac{\pi}{12}$の値を求めよ。
(2)$O$を原点とする$xy$平面上に$O$を中心とする半径1の円$E$があり、$E$上に3点$A(0,-1),B\left(-\dfrac{\sqrt3}{2},\dfrac{1}{2}\right), C\left(\dfrac{1}{2},-\dfrac{\sqrt3}{2}\right)$がある。また、$E$の上に点$P$をとり、$P(\cosθ,\sinθ)\left(0\leqq \theta\leqq\dfrac{\pi}{2}\right)$とするとき、$L$を$L=AP^2+BP^2+CP^2$と定める。
(i)$L$を$\theta$で表せ。
(ii)$\theta$が$0\leqq\theta\leqq\dfrac{\pi}{2}$を変化するとき、$L$の最大値、最小値とそれを与える$\theta$の値を求めよ。
大問3:場合の数
1,2,3,4,5,6,7,8,9の9枚のカードを$A,B,C$の3人に3枚ずつ配る。
(1)カードの配り方は全部で何通りあるか。
(2)$A$のカードの番号がいずれも2の倍数であるような3人への配り方は何通りあるか。
(3)$A$のカードの番号の積が3の倍数となるような3人への配り方は何通りあるか。
(4)$A,B,C$のカードの番号の積がそれぞれ6の倍数となるような3人への配り方は何通りあるか。
大問4:微分法
$a$を正の定数とし、関数$f(x)$を$f(x)=x^2-ax^2+4a-8$とする。
連立不等式$y\geqq f(x),y\leqq f(0),x\geqq 0$を満たす整数の組$(x,y)$の個数を$N(a)$とする。
(1)$a=2$のとき、$f(x)$の増減、極値を調べ、$y=f(x)$のグラフの概形をかけ。
(2)$N(2)$を求めよ。
(3)$f(x)$の極大値を$M$とする。曲線$y=f(x)$と直線$y=M$の共有点のx座標のうち、正であるものを求めよ。
(4)$a$を$\dfrac{9}{4}\lt a\lt\dfrac{5}{2}$を満たす定数とするとき、$N(a)=N(2)$となるような$a$の値の範囲を求めよ。
大問5:数列
$r$は0以外の実数とする。数列${a_n}$は、$a_1=1,a_{n+1}=ra_n (n=1,2,3,…)$を満たしている。また、この数列${a_n}$に対して、数列${b_n}$を、$b_1=-1,b_{n+1}=2b_n+a_n (n=1,2,3,…)$によって定める。
(1)数列${a_n}$の一般項を求めよ。
(2)数列${c_n}$を $c_n=\dfrac{b_n}{r^n}$ によって定める。
(i)$c_{n+1}$を$r$と$c_n$を用いて表せ。
(ii)数列${c_n}$の一般項を求めよ。
(3)$S_n=\displaystyle \sum_{k=1}^n b_k$とする。$r=2$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。また、$r=4$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。
チャプター:

0:00 オープニング
0:05 大問1の問題文
0:10 (1)解説:cos、面積
4:41 (2)解説:解の配置
6:57 (3)解説:高次方程式
9:29 (4)解説:点と直線の距離
11:35 (5)解説:指数の対称式
13:02 (6)解説:対数方程式
15:47 大問2の問題文
15:52 (1)の解説:sinπ/12、cosπ/12の値
17:15 (2-i)の解説:Lをθで表せ
20:21 (2-ii)の解説:Lの最大最小
23:47 大問3の問題文
23:52 (1)の解説:カードの分け方
25:12 (2)の解説:いずれも2の倍数
25:59 (3)の解説:積が3の倍数
27:07 (4)の解説:積が6の倍数
30:00 大問4の問題文
30:05 (1)の解説:グラフの概形
32:31 (2)の解説:格子点の個数
33:25 (3)の解説:f(x)と極大値の交点
35:06 (4)の解説:格子点が4個になるとき
38:22 大問5の問題文
38:27 (1)の解説:等比数列の一般項
39:12 (2-i)の解説:指数型の式変形
40:39 (2-ii)の解説:等差型と特性方程式型
44:12 (3)の解説:和が最小になるとき
48:23 エンディング

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)$AB=5,BC=7,CA=6$の三角形$ABC$がある。$\cos\angle BAC$の値と三角形$ABC$の外接円の半径を求めよ。
(2)$a$は実数の定数とする。$x$の2次方程式$x^2-2ax+5a-6=0$が異なる2つの正の解をもつようなaの値の範囲を求めよ。
(3)方程式$x^3-4x^2+8=0$を解け。
(4)$m$は実数の定数とする。座標平面における原点$O$と直線$y=mx+m+2$の距離が2より大きくなるようなmの値の範囲を求めよ。
(5)実数$x$が、$2^x+2^{-x}=3$を満たしている。$4^x+4^{-x}$の値を求めよ。
(6)方程式$\log_4(5x-1)=log_2(2x-1)$を解け。
大問2:三角関数
(1)$\sin\dfrac{\pi}{12},\cos\dfrac{\pi}{12}$の値を求めよ。
(2)$O$を原点とする$xy$平面上に$O$を中心とする半径1の円$E$があり、$E$上に3点$A(0,-1),B\left(-\dfrac{\sqrt3}{2},\dfrac{1}{2}\right), C\left(\dfrac{1}{2},-\dfrac{\sqrt3}{2}\right)$がある。また、$E$の上に点$P$をとり、$P(\cosθ,\sinθ)\left(0\leqq \theta\leqq\dfrac{\pi}{2}\right)$とするとき、$L$を$L=AP^2+BP^2+CP^2$と定める。
(i)$L$を$\theta$で表せ。
(ii)$\theta$が$0\leqq\theta\leqq\dfrac{\pi}{2}$を変化するとき、$L$の最大値、最小値とそれを与える$\theta$の値を求めよ。
大問3:場合の数
1,2,3,4,5,6,7,8,9の9枚のカードを$A,B,C$の3人に3枚ずつ配る。
(1)カードの配り方は全部で何通りあるか。
(2)$A$のカードの番号がいずれも2の倍数であるような3人への配り方は何通りあるか。
(3)$A$のカードの番号の積が3の倍数となるような3人への配り方は何通りあるか。
(4)$A,B,C$のカードの番号の積がそれぞれ6の倍数となるような3人への配り方は何通りあるか。
大問4:微分法
$a$を正の定数とし、関数$f(x)$を$f(x)=x^2-ax^2+4a-8$とする。
連立不等式$y\geqq f(x),y\leqq f(0),x\geqq 0$を満たす整数の組$(x,y)$の個数を$N(a)$とする。
(1)$a=2$のとき、$f(x)$の増減、極値を調べ、$y=f(x)$のグラフの概形をかけ。
(2)$N(2)$を求めよ。
(3)$f(x)$の極大値を$M$とする。曲線$y=f(x)$と直線$y=M$の共有点のx座標のうち、正であるものを求めよ。
(4)$a$を$\dfrac{9}{4}\lt a\lt\dfrac{5}{2}$を満たす定数とするとき、$N(a)=N(2)$となるような$a$の値の範囲を求めよ。
大問5:数列
$r$は0以外の実数とする。数列${a_n}$は、$a_1=1,a_{n+1}=ra_n (n=1,2,3,…)$を満たしている。また、この数列${a_n}$に対して、数列${b_n}$を、$b_1=-1,b_{n+1}=2b_n+a_n (n=1,2,3,…)$によって定める。
(1)数列${a_n}$の一般項を求めよ。
(2)数列${c_n}$を $c_n=\dfrac{b_n}{r^n}$ によって定める。
(i)$c_{n+1}$を$r$と$c_n$を用いて表せ。
(ii)数列${c_n}$の一般項を求めよ。
(3)$S_n=\displaystyle \sum_{k=1}^n b_k$とする。$r=2$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。また、$r=4$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。
投稿日:2024.01.08

<関連動画>

大学入試問題#471「深夜1時でストック0」 信州大学後期(2013) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\cos^3\ x}{\sin^2\ x} dx$

出典:2013年信州大学後期 入試問題
この動画を見る 

大学入試問題#902「いやーこれはしんどかった」 #東京理科大学(2010)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
点$(x,y)$は$x^2+y^2=1$を満たしているとき
$\displaystyle \frac{2x+y+1}{3x+y+5}$の最大値と最小値を求めよ。

出典:2010年東京理科大学
この動画を見る 

早稲田 積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93早稲田大学過去問題
$f(x)=-x^3+2x+\frac{1}{3} \{ \int_0^1f(x)dx \}^2$
と$y=x+\frac{3}{4}$で囲まれた面積
この動画を見る 

茨城大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを4回振って出た目を順に$a,b,c,d$

(1)
$a^2+b^2+c^2+d^2$が4の倍数になる確率を求めよ

(2)
積$abcd$が4の倍数となる確率を求めよ

出典:2010年茨城大学 過去問
この動画を見る 

福田の数学〜早稲田大学理工学部2025第5問〜無理関数のグラフ上に無数の有理点が存在する証明

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$xy$平面上の曲線$C:y=\sqrt[3]{x^2+2}$と考え、

$C$上の$(0,\sqrt[3]{2})$以外の点$P(a,b)$における接線を

$\ell : y = kx +c$と表す。$C$と$\ell$の方程式から

$x$を消去して得られる$y$についての$3$次方程式

$f(y)=0$は$b$を重解としてもつので、もう$1$つの解を

$b'$とする。

ただし、$b'$が$3$重解のときは$b'=b$とみなす。

次の問いに答えよ。

(1)$2b+b'$を$k$のみの分数式で表せ。

(2)$b'$を$b$のみの分数式で表せ。

(3)$C$と$\ell$の共有点で、その$y$座標が$b'$であるものを

$P'(a',b')$とする。

$a$と$b$が有理数ならば、$a'$と$b'$も有理数であることを

示せ。

(4)$b$が奇数$p,q$と負でない整数$r$を用いて

$b=\dfrac{p}{2^r q}$で与えられるとする。

有理数$b'$を奇数$p',q'$と整数$s$を用いて$b'=\dfrac{p'}{2^s q'}$と

表すとき、$s$を$r$の式で表せ。

(5)$P(5,3)$が曲線$C$上の点であることを利用して、

$C$上に$x$座標と$y$座標がともに有理数であるような点が

無数に存在することを示せ。

$2025$年早稲田大学理工学部過去問題
この動画を見る 
PAGE TOP