【数学模試解説】2022年度1月 第4回 高2K塾記述模試 全問解説 - 質問解決D.B.(データベース)

【数学模試解説】2022年度1月 第4回 高2K塾記述模試 全問解説

問題文全文(内容文):
大問1:小問集合
(1)$AB=5,BC=7,CA=6$の三角形$ABC$がある。$\cos\angle BAC$の値と三角形$ABC$の外接円の半径を求めよ。
(2)$a$は実数の定数とする。$x$の2次方程式$x^2-2ax+5a-6=0$が異なる2つの正の解をもつようなaの値の範囲を求めよ。
(3)方程式$x^3-4x^2+8=0$を解け。
(4)$m$は実数の定数とする。座標平面における原点$O$と直線$y=mx+m+2$の距離が2より大きくなるようなmの値の範囲を求めよ。
(5)実数$x$が、$2^x+2^{-x}=3$を満たしている。$4^x+4^{-x}$の値を求めよ。
(6)方程式$\log_4(5x-1)=log_2(2x-1)$を解け。
大問2:三角関数
(1)$\sin\dfrac{\pi}{12},\cos\dfrac{\pi}{12}$の値を求めよ。
(2)$O$を原点とする$xy$平面上に$O$を中心とする半径1の円$E$があり、$E$上に3点$A(0,-1),B\left(-\dfrac{\sqrt3}{2},\dfrac{1}{2}\right), C\left(\dfrac{1}{2},-\dfrac{\sqrt3}{2}\right)$がある。また、$E$の上に点$P$をとり、$P(\cosθ,\sinθ)\left(0\leqq \theta\leqq\dfrac{\pi}{2}\right)$とするとき、$L$を$L=AP^2+BP^2+CP^2$と定める。
(i)$L$を$\theta$で表せ。
(ii)$\theta$が$0\leqq\theta\leqq\dfrac{\pi}{2}$を変化するとき、$L$の最大値、最小値とそれを与える$\theta$の値を求めよ。
大問3:場合の数
1,2,3,4,5,6,7,8,9の9枚のカードを$A,B,C$の3人に3枚ずつ配る。
(1)カードの配り方は全部で何通りあるか。
(2)$A$のカードの番号がいずれも2の倍数であるような3人への配り方は何通りあるか。
(3)$A$のカードの番号の積が3の倍数となるような3人への配り方は何通りあるか。
(4)$A,B,C$のカードの番号の積がそれぞれ6の倍数となるような3人への配り方は何通りあるか。
大問4:微分法
$a$を正の定数とし、関数$f(x)$を$f(x)=x^2-ax^2+4a-8$とする。
連立不等式$y\geqq f(x),y\leqq f(0),x\geqq 0$を満たす整数の組$(x,y)$の個数を$N(a)$とする。
(1)$a=2$のとき、$f(x)$の増減、極値を調べ、$y=f(x)$のグラフの概形をかけ。
(2)$N(2)$を求めよ。
(3)$f(x)$の極大値を$M$とする。曲線$y=f(x)$と直線$y=M$の共有点のx座標のうち、正であるものを求めよ。
(4)$a$を$\dfrac{9}{4}\lt a\lt\dfrac{5}{2}$を満たす定数とするとき、$N(a)=N(2)$となるような$a$の値の範囲を求めよ。
大問5:数列
$r$は0以外の実数とする。数列${a_n}$は、$a_1=1,a_{n+1}=ra_n (n=1,2,3,…)$を満たしている。また、この数列${a_n}$に対して、数列${b_n}$を、$b_1=-1,b_{n+1}=2b_n+a_n (n=1,2,3,…)$によって定める。
(1)数列${a_n}$の一般項を求めよ。
(2)数列${c_n}$を $c_n=\dfrac{b_n}{r^n}$ によって定める。
(i)$c_{n+1}$を$r$と$c_n$を用いて表せ。
(ii)数列${c_n}$の一般項を求めよ。
(3)$S_n=\displaystyle \sum_{k=1}^n b_k$とする。$r=2$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。また、$r=4$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。
チャプター:

0:00 オープニング
0:05 大問1の問題文
0:10 (1)解説:cos、面積
4:41 (2)解説:解の配置
6:57 (3)解説:高次方程式
9:29 (4)解説:点と直線の距離
11:35 (5)解説:指数の対称式
13:02 (6)解説:対数方程式
15:47 大問2の問題文
15:52 (1)の解説:sinπ/12、cosπ/12の値
17:15 (2-i)の解説:Lをθで表せ
20:21 (2-ii)の解説:Lの最大最小
23:47 大問3の問題文
23:52 (1)の解説:カードの分け方
25:12 (2)の解説:いずれも2の倍数
25:59 (3)の解説:積が3の倍数
27:07 (4)の解説:積が6の倍数
30:00 大問4の問題文
30:05 (1)の解説:グラフの概形
32:31 (2)の解説:格子点の個数
33:25 (3)の解説:f(x)と極大値の交点
35:06 (4)の解説:格子点が4個になるとき
38:22 大問5の問題文
38:27 (1)の解説:等比数列の一般項
39:12 (2-i)の解説:指数型の式変形
40:39 (2-ii)の解説:等差型と特性方程式型
44:12 (3)の解説:和が最小になるとき
48:23 エンディング

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)$AB=5,BC=7,CA=6$の三角形$ABC$がある。$\cos\angle BAC$の値と三角形$ABC$の外接円の半径を求めよ。
(2)$a$は実数の定数とする。$x$の2次方程式$x^2-2ax+5a-6=0$が異なる2つの正の解をもつようなaの値の範囲を求めよ。
(3)方程式$x^3-4x^2+8=0$を解け。
(4)$m$は実数の定数とする。座標平面における原点$O$と直線$y=mx+m+2$の距離が2より大きくなるようなmの値の範囲を求めよ。
(5)実数$x$が、$2^x+2^{-x}=3$を満たしている。$4^x+4^{-x}$の値を求めよ。
(6)方程式$\log_4(5x-1)=log_2(2x-1)$を解け。
大問2:三角関数
(1)$\sin\dfrac{\pi}{12},\cos\dfrac{\pi}{12}$の値を求めよ。
(2)$O$を原点とする$xy$平面上に$O$を中心とする半径1の円$E$があり、$E$上に3点$A(0,-1),B\left(-\dfrac{\sqrt3}{2},\dfrac{1}{2}\right), C\left(\dfrac{1}{2},-\dfrac{\sqrt3}{2}\right)$がある。また、$E$の上に点$P$をとり、$P(\cosθ,\sinθ)\left(0\leqq \theta\leqq\dfrac{\pi}{2}\right)$とするとき、$L$を$L=AP^2+BP^2+CP^2$と定める。
(i)$L$を$\theta$で表せ。
(ii)$\theta$が$0\leqq\theta\leqq\dfrac{\pi}{2}$を変化するとき、$L$の最大値、最小値とそれを与える$\theta$の値を求めよ。
大問3:場合の数
1,2,3,4,5,6,7,8,9の9枚のカードを$A,B,C$の3人に3枚ずつ配る。
(1)カードの配り方は全部で何通りあるか。
(2)$A$のカードの番号がいずれも2の倍数であるような3人への配り方は何通りあるか。
(3)$A$のカードの番号の積が3の倍数となるような3人への配り方は何通りあるか。
(4)$A,B,C$のカードの番号の積がそれぞれ6の倍数となるような3人への配り方は何通りあるか。
大問4:微分法
$a$を正の定数とし、関数$f(x)$を$f(x)=x^2-ax^2+4a-8$とする。
連立不等式$y\geqq f(x),y\leqq f(0),x\geqq 0$を満たす整数の組$(x,y)$の個数を$N(a)$とする。
(1)$a=2$のとき、$f(x)$の増減、極値を調べ、$y=f(x)$のグラフの概形をかけ。
(2)$N(2)$を求めよ。
(3)$f(x)$の極大値を$M$とする。曲線$y=f(x)$と直線$y=M$の共有点のx座標のうち、正であるものを求めよ。
(4)$a$を$\dfrac{9}{4}\lt a\lt\dfrac{5}{2}$を満たす定数とするとき、$N(a)=N(2)$となるような$a$の値の範囲を求めよ。
大問5:数列
$r$は0以外の実数とする。数列${a_n}$は、$a_1=1,a_{n+1}=ra_n (n=1,2,3,…)$を満たしている。また、この数列${a_n}$に対して、数列${b_n}$を、$b_1=-1,b_{n+1}=2b_n+a_n (n=1,2,3,…)$によって定める。
(1)数列${a_n}$の一般項を求めよ。
(2)数列${c_n}$を $c_n=\dfrac{b_n}{r^n}$ によって定める。
(i)$c_{n+1}$を$r$と$c_n$を用いて表せ。
(ii)数列${c_n}$の一般項を求めよ。
(3)$S_n=\displaystyle \sum_{k=1}^n b_k$とする。$r=2$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。また、$r=4$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。
投稿日:2024.01.08

<関連動画>

大学入試問題#358「チャートの例題に載ってもいいのかな?」 青山学院大学(2010) #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty } \displaystyle \int_{1}^{0}(\displaystyle \frac{x+1}{\sqrt{ x^2+2x }}-1)dx$

出典:2010年青山学院大学 入試問題
この動画を見る 

福田の数学〜北里大学2022年医学部第1問(1)〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 (1)iを虚数単位とし、$α= -2+2i,β=3+i$とする。
このとき、$α^5$の値は[ア]である。
zは等式 $2|z-α| = |z-β|$を満たす複素数全体を動くとする。
このとき、複素数平面上の点P(z) が描く図形は円であり、その中心を表す複素数は[イ]である。
また、 |z| の最大値は[ウ]である。

2022北里大学医学部過去問
この動画を見る 

愛媛大 式の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{1+\sqrt{ 5 }}{2})^3$の小数部分を$a$
$a^4+5a^3+4a^2+4a$の値を求めよ

出典:2015年愛媛大学 過去問
この動画を見る 

福田の数学〜立教大学2021年理学部第2問〜2直線のなす角の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$座標平面において、放物線$y=x^2$上の点でx座標が$p,p+1,p+2$である点を
それぞれ$P,Q,R$とする。また、直線PQの傾きを$m_1$、直線PRの傾きを$m_2$、
$\angle QPR=\theta$とする。

(1)$m_1,\ m_2$をそれぞれ$p$を用いて表せ。
(2)$p$が実数全体を動くとき、$m_1m_2$の最小値を求めよ。
(3)$\tan\theta$を$p$を用いて表せ。
(4)$p$が実数全体を動くとき、$\theta$が最大になる$p$の値を求めよ。

2021立教大学理工学部過去問
この動画を見る 

関西医科大 分数不等式 整数問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022関西医科大学過去問題
$f(x)=\frac{6x^2+17x+10}{3x-2}$
①$f(x)>0$をみたすxの範囲
②f(n)が正の整数となる整数n
この動画を見る 
PAGE TOP