福田の数学〜慶應義塾大学2022年環境情報学部第1問〜4つの音で作るチャイムの種類 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年環境情報学部第1問〜4つの音で作るチャイムの種類

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ ある学校では、ドミソシの4つの音を4つ組み合わせてチャイムを作り、\\
授業の開始・終了などを知らせるために鳴らしている。\\
チャイムは、図1(※動画参照)のように4×4の格子状に並んだ16個のボタン\\
を押すことによって作ることができる。縦方向は音の種類を表し、横方向は時間\\
を表している。例えば、ドミソシという音を1つずつ、\\
順番に鳴らすチャイムを作るには、図2(※動画参照)のようにボタンを押せばよい。\\
ただし、鳴らすことのできる音の数は縦1列あたり1つだけであり、\\
音を鳴らさない無音は許されず、それぞれの例で必ず1つの音を選ばなければならないとする。\\
(1)4つの音を1回ずつ鳴らすことを考えた場合、チャイムの種類は\ \boxed{\ \ アイウ\ \ }\ 通り。\\
(2)(1)に加えて、同じ音を連続して2回繰り返すことを1度だけしてもかまわない(例:ドミミソ)\\
とした場合、\\
チャイムの種類は合わせて\ \boxed{\ \ エオカ\ \ }\ 通りになる。\\
ただし、連続する音以外は高々1回までしか鳴らすことはできず、\\
それらは連続する音とは異ならなければならないものとする。\\
(3)(1)と(2)に加えて、同じ音を連続して4回繰り返すチャイムを許すと、\\
可能なチャイムの種類は合わせて\ \boxed{\ \ キクケ\ \ }\ 通りになる。\\
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ ある学校では、ドミソシの4つの音を4つ組み合わせてチャイムを作り、\\
授業の開始・終了などを知らせるために鳴らしている。\\
チャイムは、図1(※動画参照)のように4×4の格子状に並んだ16個のボタン\\
を押すことによって作ることができる。縦方向は音の種類を表し、横方向は時間\\
を表している。例えば、ドミソシという音を1つずつ、\\
順番に鳴らすチャイムを作るには、図2(※動画参照)のようにボタンを押せばよい。\\
ただし、鳴らすことのできる音の数は縦1列あたり1つだけであり、\\
音を鳴らさない無音は許されず、それぞれの例で必ず1つの音を選ばなければならないとする。\\
(1)4つの音を1回ずつ鳴らすことを考えた場合、チャイムの種類は\ \boxed{\ \ アイウ\ \ }\ 通り。\\
(2)(1)に加えて、同じ音を連続して2回繰り返すことを1度だけしてもかまわない(例:ドミミソ)\\
とした場合、\\
チャイムの種類は合わせて\ \boxed{\ \ エオカ\ \ }\ 通りになる。\\
ただし、連続する音以外は高々1回までしか鳴らすことはできず、\\
それらは連続する音とは異ならなければならないものとする。\\
(3)(1)と(2)に加えて、同じ音を連続して4回繰り返すチャイムを許すと、\\
可能なチャイムの種類は合わせて\ \boxed{\ \ キクケ\ \ }\ 通りになる。\\
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
投稿日:2022.07.08

<関連動画>

【数A】確率:(理系)東京大学1971年 ジャンケンの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3人でジャンケンをして勝者をきめることにする。たとえば,1人が"紙"を出し, 他の2人が”石"を出せば,ただ1回でちょうど1人の勝者がきまることになる。 
3 人でジャンケンをして,負けた人は次の回に参加しないことにして,ちょうど1 人の勝者がきまるまで,ジャンケンをくり返すことにする。 
このとき,n回目 に,はじめてちょうど1人の勝者がきまる確率を求めよう。
この動画を見る 

名古屋大学2024年の確率と積分の融合問題をその場で解きながら解説してみた!#shorts #高校数学 #名古屋大学

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
名古屋大学2024年の確率と積分の融合問題をその場で解きながら解説してみた!
この動画を見る 

【数学】確率:センター試験(平成30年)本試

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1枚のコインを最大で5回投げるゲームを行う。このゲームでは、1回投げるごとに表が出たら持ち点に2点を加え、裏が出たら持ち点に -1点を加える。はじめの持ち点は0点とし、ゲーム終了のルールを次のように定める。

 ・持ち点が再び0点になった場合は、その時点で終了する。

 ・持ち点が再び0点にならない場合は、コインを5回投げ終わった時点で終了する。

(1) コインを2回投げ終わって持ち点が -2点である確率は □
である。また、コインを2回投げ終わって持ち点が1点である確率は □
である。
(2) 持ち点が再び0点になることが起こるのは、コインを
□ 回投げ終わったときである。コインを □回投げ終わって持ち点が0点になる確率は
□である。
(3) ゲームが終了した時点で持ち点が4点である確率は □である。
(4) ゲームが終了した時点で持ち点が4点であるとき、コインを2回投げ終わって持ち点が1点である条件付き確率は□である。
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第3問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
中にくじが入っている箱が複数あり、各箱の外見は同じであるが、当たりくじ
を引く確率は異なっている。くじ引きの結果から、どの箱からくじを引いた可能
性が対価を、条件付き確率を用いて考えよう。

(1)当たりくじを引く確率が$\displaystyle \frac{1}{2}$である箱Aと、当たりくじを引く確率が$\displaystyle \frac{1}{3}$
である箱$B$の二つの箱の場合を考える。

$(\textrm{i})$各箱で、くじを1本引いてはもとに戻す試行を3回繰り返したとき
箱Aにおいて、3回中ちょうど1回当たる確率は$\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$ $\cdots$①
箱Bにおいて、3回中ちょうど1回当たる確率は$\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$ $\cdots$②
である。

$(\textrm{ii})$まず、AとBのどちらか一方の箱をでたらめに選ぶ。次にその選んだ箱
において、くじを1本引いてはもとに戻す試行を3回繰り返したところ、3
回中ちょうど1回当たった。このとき、箱Aが選ばれる事象をA、箱Bが
選ばれる事象をB、3回中ちょうど1回当たる事象をWとすると
$P(A \cap W)=\displaystyle \frac{1}{2}×\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}, P(B \cap W)=\displaystyle \frac{1}{2}×\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$
である。$P(W)=P(A \cap W)+P(B \cap W)$であるから。3回中ちょうど1
回当たった時、選んだ箱がAである条件付き確率$P_W(A)$は$\displaystyle \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$と
なる。また、条件付き確率は$P_W(B)$は$\displaystyle \frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$となる。
(2)(1)の$P_W(A)$と$P_W(B)$について、次の事実(*)が成り立つ。

事実(*)
$P_W(A)$と$P_W(B)$の$\boxed{\boxed{\ \ ス\ \ }}$は、①の確率と②の確率の$\boxed{\boxed{\ \ ス\ \ }}$
に等しい。

$\boxed{\boxed{\ \ ス\ \ }}$の解答群
⓪和 ①2乗の和 ②3乗の和 ③比 ④積

(3)花子さんと太郎さんは事実(*)について話している。
花子:事実(*)はなぜ成り立つのかな?
太郎:$P_W(A)$と$P_W(B)$を求めるのに必要な$P(A \cap W)$と$P(B \cap W)$
の計算で、①,②の確率に同じ数$\displaystyle \frac{1}{2}$をかけているからだよ。
花子:なるほどね。外見が同じ三つの箱の場合は、同じ数$\displaystyle \frac{1}{3}$をかける
ことになるので、同様のことが成り立ちそうだね。

当たりくじを引く確率が、$\displaystyle \frac{1}{2}$である箱$A$、$\displaystyle \frac{1}{3}$である箱$B$、$\displaystyle \frac{1}{4}$である箱
$C$の三つの箱の場合を考える。まず、$A,B,C$のうちどれか一つの箱
をでたらめに選ぶ。次にその選んだ箱において、くじを1本引いては
もとに戻す試行を3回繰り返したところ、3回中ちょうど1回当たった。
このとき、選んだ箱がAである条件付き確率は$\displaystyle \frac{\boxed{\ \ セソタ\ \ }}{\boxed{\ \ チツテ\ \ }}$となる。

(4)花子:どうやら箱が三つの場合でも、条件付き確率の$\boxed{\boxed{\ \ ス\ \ }}$は各箱で
3回中ちょうど1回当たりくじを引く確率の$\boxed{\boxed{\ \ ス\ \ }}$になっている
みたいだね。
太郎:そうだね。それを利用すると、条件付き確率の値は計算しなくて
も、その大きさを比較することができるね。

当たりくじを引く確率が、$\displaystyle \frac{1}{2}$である箱$A$、$\displaystyle \frac{1}{3}$である箱$B$、$\displaystyle \frac{1}{4}$である箱
$C$、$\displaystyle \frac{1}{5}$である箱$D$の四つの箱の場合を考える。まず、$A,B,C,D$のうち
どれか一つの箱をでたらめに選ぶ。次にその選んだ箱において、くじを
1本引いてはもとに戻す試行を3回繰り返したところ、3回中ちょうど
1回当たった。このとき、条件付き確率を用いて、どの箱からくじを
引いた可能性が高いかを考える。可能性が高い方から順に並べると
$\boxed{\boxed{\ \ ト\ \ }}$となる。
$\boxed{\boxed{\ \ ト\ \ }}$の解答群
⓪$A,B,C,D$
①$A,B,D,C$
②$A,C,B,D$
③$A,C,D,B$
④$A,D,B,C$
⑤$B,A,C,D$
⑥$B,A,D,C$
⑦$B,C,A,D$
⑧$B,C,D,A$

2021共通テスト過去問
この動画を見る 

ロト7全パターン買ったらプラス?

アイキャッチ画像
単元: #数A#場合の数と確率#確率
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 
PAGE TOP