【数Ⅲ】微分法:sinを微分するとどうなる??グラフのイメージでサクッとわかる♪ - 質問解決D.B.(データベース)

【数Ⅲ】微分法:sinを微分するとどうなる??グラフのイメージでサクッとわかる♪

問題文全文(内容文):
sinを微分するとどうなる??
チャプター:

0:00 オープニング
0:12 sinの微分
2:16 cosの微分

単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
sinを微分するとどうなる??
投稿日:2021.06.08

<関連動画>

福田の数学〜千葉大学2023年第9問〜関数の増減と最大Part2

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
9 関数f(x)と実数tに対し、xの関数tx-f(x)の最大値があればそれをg(t)と書く。
(1)f(x)=x4のとき、任意の実数tについてg(t)が存在する。このg(t)を求めよ。
以下、関数f(x)は連続な導関数f(x)を持ち、次の2つの条件(i),(ii)が成り立つものとする。
(i)f(x)は増加関数、すなわちabならばf(a)f(b)
(ii)limxf(x)= かつ limxf(x)=
(2)任意の実数tに対して、xの関数tx-f(x)は最大値g(t)を持つことを示せ。
(3)sを実数とする。tが実数全体を動くとき、tの関数st-g(x)は最大値f(s)となることを示せ。
この動画を見る 

福田のおもしろ数学151〜面積を2等分する直線が存在する証明

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
左の図形(※動画参照)の面積を2等分する直線が存在することを証明してください。
この動画を見る 

【数Ⅲ】微分法:整式の次数に着目して解く問題

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
f(x)は0でない整式で次を満たすとする。
xf(x)+(1x)f(x)+3f(x)=0
f(0)=1
(1)f(x)の次数を求めよ
(2)f(x)を求めよ
この動画を見る 

福田のわかった数学〜高校3年生理系089〜グラフを描こう(11)分数関数、凹凸、漸近線

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学III グラフを描こう(11)

y=x3x21 のグラフを描け。ただし、凹凸、漸近線も調べよ。
この動画を見る 

岩手大 微分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
f(x)=x4+a(x2)2(a>0)
(1)f(x)が極小値をもつためのaの範囲
(2)f(x)が極小値を持つとき、その極小値を与えるxの値をtとする。2<t<3を示せ。
(3)(2)のとき、f(t)>-27を示せ。
この動画を見る 
PAGE TOP preload imagepreload image