数Ⅱ微分の良問です【大阪大学】【数学 入試問題】 - 質問解決D.B.(データベース)

数Ⅱ微分の良問です【大阪大学】【数学 入試問題】

問題文全文(内容文):
$点(0,1)を通り曲線$y=x^3-ax^2$に接する直線がちょうど2本存在するとき,実数$a$の値と2本の接線の方程式を求めよ。

大阪大過去問
チャプター:

00:04 問題文
00:37 本問題の解答・解説
07:12 次回の問題

単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$点(0,1)を通り曲線$y=x^3-ax^2$に接する直線がちょうど2本存在するとき,実数$a$の値と2本の接線の方程式を求めよ。

大阪大過去問
投稿日:2022.10.25

<関連動画>

【数Ⅱ】三角関数:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは実数の定数とし、$0\leqq\theta\lt 2\pi$とする。次の2つの式を考える。
$8a\cos\theta- 8\cos2\theta=a^2+7$…①
$\sin\theta-\cos\theta\gt-1$…②
(1)a=1のとき、方程式①を解け。
(2)不等式②を 解け。
(3)(2)で求めた範囲に①の異なる解がちょうど3個存在するようなaの値の 範囲を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第1問(4)〜円と接線の長さ

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)円$x^2$+$y^2$-$4x$+$10y$+11=0 を$C$とするとき、円$C$の中心は$\boxed{\ \ オ\ \ }$であり、半径は$\boxed{\ \ カ\ \ }$である。また、この円$C$には点P(3,2)から2本の接線を引くことができるが、その接点の1つをAとする。このとき、線分APの長さはAP=$\boxed{\ \ キ\ \ }$である。
この動画を見る 

13兵庫県教員採用試験(数学:2番 微分)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
2⃣
$C_1:y=x^2-4x+36$ , $C_2:y=4x^2+8x$の共通接線の方程式を求めよ。
この動画を見る 

ただの対数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \log_2 x+\log_3 x=1 $
これを解け.
この動画を見る 

福田のおもしろ数学482〜漸化式で定まる数列に関する不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$a_1=1,a_2=\dfrac{1}{2},$

$a_{n+2}=a_n+\dfrac{1}{2}a_{n+1}+\dfrac{1}{4a_na_{n+1}}$のとき、

$\dfrac{1}{a_1a_3}+\dfrac{1}{a_2a_4}+\dfrac{1}{a_3a_5}+\cdots +\dfrac{1}{a_{2025}a_{2027}}\lt 4$

であることを証明せよ。
    
この動画を見る 
PAGE TOP