20年5月数学検定1級1次試験(合同式) - 質問解決D.B.(データベース)

20年5月数学検定1級1次試験(合同式)

問題文全文(内容文):
1⃣
2018 $n ≡ 2$ (mod 1000)をみたす最小の自然数nを求めよ
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣
2018 $n ≡ 2$ (mod 1000)をみたす最小の自然数nを求めよ
投稿日:2020.06.10

<関連動画>

見掛け倒し

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \underbrace{777・・・・・・77^7}_{101桁}$を18で割ったあまりを求めよ.
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第2問〜約数と倍数と最大公約数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$を次のように定める。
$a_1=1,  a_{n+1}=a_n^2+1  (n=1,2,3,\ldots)$
(1)正の整数nが3の倍数のとき、$a_n$は5の倍数となることを示せ。
(2)k,nを正の整数とする。$a_n$が$a_k$の倍数となるための必要十分条件をk,nを
用いて表せ。
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。

2022東京大学理系過去問
この動画を見る 

ナイスな整数問題 鳥取大(医)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは自然数
a≧b≧c

$(1+\displaystyle \frac{1}{a})(1+\displaystyle \frac{1}{b})(1+\displaystyle \frac{1}{c})=2$

をみたす(a,b,c)の組を
すべて求めよ

鳥取大学医学部
この動画を見る 

【数A】整数の性質:φ関数(φ(6)について) 問題文「1~nまでの自然数でnと互いに素な自然数の個数を求めよ」

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1~nまでの自然数でnと互いに素な自然数の個数を求めよ
この動画を見る 

【数A】整数の性質:日本医科大学 不等式で絞る

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)5つの実数の総和が1であるならば、これらのうち少なくとも1つは$\dfrac{1}{5}$以上で あることを証明しよう。
(2)(1)の結果を利用して、$x_1+x_2+x_3+x_4+x_5=x_1・x_2・x_3・ x_4・x_5$を満たす正の整数$x_1,x_2,x_3,x_4,x_5$(ただし、 $x_1≦x_2≦x_3≦x_4≦x_5$)の組をすべて求めよう。
この動画を見る 
PAGE TOP