ちょっと変わった漸化式 和歌山大 - 質問解決D.B.(データベース)

ちょっと変わった漸化式 和歌山大

問題文全文(内容文):
2022和歌山大学過去問題
$a_{1}=\frac{1}{2}$,$a_{n+1}=\frac{2}{1+a_{n}}$
$b_{1}=1$,$a_{n}b_{n+1}=b_{n}$
数列$b_{n}$の三項間漸化式をつくれ
$a_{n}$の一般項を求めよ
単元: #数列#漸化式#和歌山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022和歌山大学過去問題
$a_{1}=\frac{1}{2}$,$a_{n+1}=\frac{2}{1+a_{n}}$
$b_{1}=1$,$a_{n}b_{n+1}=b_{n}$
数列$b_{n}$の三項間漸化式をつくれ
$a_{n}$の一般項を求めよ
投稿日:2023.09.20

<関連動画>

【短時間でマスター!!】漸化式を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
数学2B
$a_1=1,a_{n+1}=2a_n+1$
$\{a_n\}$の一般項
この動画を見る 

京都大学 確率 数列 融合問題 高校数学 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2005京都大学過去問題
1~nまでの番号のついてn枚($n \geqq 3$,自然数)から3枚取り出して小さい順に並べたときに等差数列になる確率を求めよ.
この動画を見る 

慶應(医)数列 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
数列$\{ a_n \}$の項の間に次の関係がある。
$a_1=\frac{1}{2},a_2=\frac{1}{6}$
$\frac{a_n+a_{n+1}+a_{n+2}}{3} = \frac{1}{n(n+3)}$
$n=1,2,3\cdots$
$a_3,a_4,a_n,\displaystyle\sum_{k=1}^\infty a_n$を求めよ。
この動画を見る 

首都大学東京 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n a_k=n^4+6n^3+11n^2+6n$

①$a_n$を$n$の式で表せ.
②$\displaystyle \sum_{k=1}^{\infty}\dfrac{1}{a_k}$

2018首都大学東京過去問
この動画を見る 

東北大(医)数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\left[\dfrac{1}{a_n}\right]$は初項$\dfrac{1}{a}$公差$d$の等差数列$\displaystyle \sum_{n=1}^{\infty}a_n a_{n+1}$を求めよ.

1998東北大(医他)過去問
この動画を見る 
PAGE TOP