問題文全文(内容文):
$\boxed{3}$
$a,p$は正の実数とする。
座標平面上の曲線$C_1:y=e^x$と$C_1$上の点
$(p,e^p)$がある。
$P$における$C_1$の法線を$\ell,\ell$と$x$軸の
交点を$A(a,0)$、$A$を中心とする半径$r$の円を
$C_2$とする。
$P$が$C_1$と$C_2$のただ一つの共有点であるとき、
次の問いに答えよ。
(1)$\ell$の方程式を$p$を用いて表せ。
(2)$a$を$p$を用いて表せ。
(3)$r$を$p$を用いて表せ。
(4)$\angle OAP=\dfrac{\pi}{6}$のとき、$p$の値を求めよ。
(5)$p$を(4)で求めた値とするとき、
次の不等式の表す領域$D$の面積$S$を求めよ。
$-2 \leqq x \leqq p,\ y\geqq 0,\ y\leqq e^x,$
$(x-a)^2+y^2\geqq r^2$
$2025$年立教大学理学部過去問題
$\boxed{3}$
$a,p$は正の実数とする。
座標平面上の曲線$C_1:y=e^x$と$C_1$上の点
$(p,e^p)$がある。
$P$における$C_1$の法線を$\ell,\ell$と$x$軸の
交点を$A(a,0)$、$A$を中心とする半径$r$の円を
$C_2$とする。
$P$が$C_1$と$C_2$のただ一つの共有点であるとき、
次の問いに答えよ。
(1)$\ell$の方程式を$p$を用いて表せ。
(2)$a$を$p$を用いて表せ。
(3)$r$を$p$を用いて表せ。
(4)$\angle OAP=\dfrac{\pi}{6}$のとき、$p$の値を求めよ。
(5)$p$を(4)で求めた値とするとき、
次の不等式の表す領域$D$の面積$S$を求めよ。
$-2 \leqq x \leqq p,\ y\geqq 0,\ y\leqq e^x,$
$(x-a)^2+y^2\geqq r^2$
$2025$年立教大学理学部過去問題
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
$a,p$は正の実数とする。
座標平面上の曲線$C_1:y=e^x$と$C_1$上の点
$(p,e^p)$がある。
$P$における$C_1$の法線を$\ell,\ell$と$x$軸の
交点を$A(a,0)$、$A$を中心とする半径$r$の円を
$C_2$とする。
$P$が$C_1$と$C_2$のただ一つの共有点であるとき、
次の問いに答えよ。
(1)$\ell$の方程式を$p$を用いて表せ。
(2)$a$を$p$を用いて表せ。
(3)$r$を$p$を用いて表せ。
(4)$\angle OAP=\dfrac{\pi}{6}$のとき、$p$の値を求めよ。
(5)$p$を(4)で求めた値とするとき、
次の不等式の表す領域$D$の面積$S$を求めよ。
$-2 \leqq x \leqq p,\ y\geqq 0,\ y\leqq e^x,$
$(x-a)^2+y^2\geqq r^2$
$2025$年立教大学理学部過去問題
$\boxed{3}$
$a,p$は正の実数とする。
座標平面上の曲線$C_1:y=e^x$と$C_1$上の点
$(p,e^p)$がある。
$P$における$C_1$の法線を$\ell,\ell$と$x$軸の
交点を$A(a,0)$、$A$を中心とする半径$r$の円を
$C_2$とする。
$P$が$C_1$と$C_2$のただ一つの共有点であるとき、
次の問いに答えよ。
(1)$\ell$の方程式を$p$を用いて表せ。
(2)$a$を$p$を用いて表せ。
(3)$r$を$p$を用いて表せ。
(4)$\angle OAP=\dfrac{\pi}{6}$のとき、$p$の値を求めよ。
(5)$p$を(4)で求めた値とするとき、
次の不等式の表す領域$D$の面積$S$を求めよ。
$-2 \leqq x \leqq p,\ y\geqq 0,\ y\leqq e^x,$
$(x-a)^2+y^2\geqq r^2$
$2025$年立教大学理学部過去問題
投稿日:2025.06.09





