福田の数学〜立教大学2025理学部第3問〜指数関数と円でできる領域の面積 - 質問解決D.B.(データベース)

福田の数学〜立教大学2025理学部第3問〜指数関数と円でできる領域の面積

問題文全文(内容文):

$\boxed{3}$

$a,p$は正の実数とする。

座標平面上の曲線$C_1:y=e^x$と$C_1$上の点

$(p,e^p)$がある。

$P$における$C_1$の法線を$\ell,\ell$と$x$軸の

交点を$A(a,0)$、$A$を中心とする半径$r$の円を

$C_2$とする。

$P$が$C_1$と$C_2$のただ一つの共有点であるとき、

次の問いに答えよ。

(1)$\ell$の方程式を$p$を用いて表せ。

(2)$a$を$p$を用いて表せ。

(3)$r$を$p$を用いて表せ。

(4)$\angle OAP=\dfrac{\pi}{6}$のとき、$p$の値を求めよ。

(5)$p$を(4)で求めた値とするとき、

次の不等式の表す領域$D$の面積$S$を求めよ。

$-2 \leqq x \leqq p,\ y\geqq 0,\ y\leqq e^x,$

$(x-a)^2+y^2\geqq r^2$

$2025$年立教大学理学部過去問題
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$a,p$は正の実数とする。

座標平面上の曲線$C_1:y=e^x$と$C_1$上の点

$(p,e^p)$がある。

$P$における$C_1$の法線を$\ell,\ell$と$x$軸の

交点を$A(a,0)$、$A$を中心とする半径$r$の円を

$C_2$とする。

$P$が$C_1$と$C_2$のただ一つの共有点であるとき、

次の問いに答えよ。

(1)$\ell$の方程式を$p$を用いて表せ。

(2)$a$を$p$を用いて表せ。

(3)$r$を$p$を用いて表せ。

(4)$\angle OAP=\dfrac{\pi}{6}$のとき、$p$の値を求めよ。

(5)$p$を(4)で求めた値とするとき、

次の不等式の表す領域$D$の面積$S$を求めよ。

$-2 \leqq x \leqq p,\ y\geqq 0,\ y\leqq e^x,$

$(x-a)^2+y^2\geqq r^2$

$2025$年立教大学理学部過去問題
投稿日:2025.06.09

<関連動画>

福田の1.5倍速演習〜合格する重要問題021〜一橋大学2016年度文系数学第4問〜絶対値の付いた3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とし、$f(x)=x^3-3ax$とする。区間$-1 \leqq x \leqq 1$における
$|f(x)|$の最大値をMとする。Mの最小値とそのときのaの値を求めよ。

2016一橋大学文系過去問
この動画を見る 

【高校数学】数Ⅲ-112 接線と法線⑤(共通接線編)

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2つの曲線$y=\dfrac{4}{x},y=x^2+kx$が点$A$で共通接線をもつように、
定数$k$の値を求めよ。

②2つの曲線$y=e^x,y=\log(x+2)$の共通接線の方程式を求めよ。
この動画を見る 

弘前大 微分

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
関数$y=f(x)$において($x=a$で微分可能)$\displaystyle \lim_{x\to a}\dfrac{x^2 f(x)-a^2 f(a)}{x^2-a^2}$を$a,f(a),f`(a)$を用いて表せ.

弘前大過去問
この動画を見る 

福田のわかった数学〜高校3年生理系070〜接線(2)媒介変数表示の接線

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$接線(2) 媒介変数表示の接線
$\left\{
\begin{array}{1}
x=\theta-\sin\theta\\
y=1-\cos\theta
\end{array}
\right.$
で表される曲線の$\theta=\frac{3\pi}{2}$のときの点Pにおける接線を求めよ。
この動画を見る 

福田のおもしろ数学151〜面積を2等分する直線が存在する証明

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
左の図形(※動画参照)の面積を2等分する直線が存在することを証明してください。
この動画を見る 
PAGE TOP