問題文全文(内容文):
高校受験対策・関数53
Q.
図1のように、関数$y=x^2$のグラフがある。
$A$はグラフ上の点で、$x$座標は$-1$である。また、2点$P,Q$はグラフ上を動くものとする。
このとき次の各問に答えなさい。ただし円周率は$\pi$とする。
①
関数$y=x^2$について、$x$の変域が$-3 \leqq x\leqq 2$のときの$y$の変域を求めなさい。
②
2点$P,Q$の$x$座標をそれぞれ$1$と$3$とする。
図2のように、$\triangle APQ$を原点$O$を中心として矢印の方向に$360°$回転移動させ、$\triangle APQ$が回転移動しながら通った部分に色をつけた。
このとき色がついている図形の面積を求めなさい。
③
2点$P,Q$の$x$座標をそれぞれ$3$と$4$とする。
直線$OA$上に四角形$OPQA$と$\triangle OPR$の面積が等しくなるように点$R$を取るとき、$R$の座標を求めなさい。
ただし$R$の$x$座標は負とする。
高校受験対策・関数53
Q.
図1のように、関数$y=x^2$のグラフがある。
$A$はグラフ上の点で、$x$座標は$-1$である。また、2点$P,Q$はグラフ上を動くものとする。
このとき次の各問に答えなさい。ただし円周率は$\pi$とする。
①
関数$y=x^2$について、$x$の変域が$-3 \leqq x\leqq 2$のときの$y$の変域を求めなさい。
②
2点$P,Q$の$x$座標をそれぞれ$1$と$3$とする。
図2のように、$\triangle APQ$を原点$O$を中心として矢印の方向に$360°$回転移動させ、$\triangle APQ$が回転移動しながら通った部分に色をつけた。
このとき色がついている図形の面積を求めなさい。
③
2点$P,Q$の$x$座標をそれぞれ$3$と$4$とする。
直線$OA$上に四角形$OPQA$と$\triangle OPR$の面積が等しくなるように点$R$を取るとき、$R$の座標を求めなさい。
ただし$R$の$x$座標は負とする。
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数53
Q.
図1のように、関数$y=x^2$のグラフがある。
$A$はグラフ上の点で、$x$座標は$-1$である。また、2点$P,Q$はグラフ上を動くものとする。
このとき次の各問に答えなさい。ただし円周率は$\pi$とする。
①
関数$y=x^2$について、$x$の変域が$-3 \leqq x\leqq 2$のときの$y$の変域を求めなさい。
②
2点$P,Q$の$x$座標をそれぞれ$1$と$3$とする。
図2のように、$\triangle APQ$を原点$O$を中心として矢印の方向に$360°$回転移動させ、$\triangle APQ$が回転移動しながら通った部分に色をつけた。
このとき色がついている図形の面積を求めなさい。
③
2点$P,Q$の$x$座標をそれぞれ$3$と$4$とする。
直線$OA$上に四角形$OPQA$と$\triangle OPR$の面積が等しくなるように点$R$を取るとき、$R$の座標を求めなさい。
ただし$R$の$x$座標は負とする。
高校受験対策・関数53
Q.
図1のように、関数$y=x^2$のグラフがある。
$A$はグラフ上の点で、$x$座標は$-1$である。また、2点$P,Q$はグラフ上を動くものとする。
このとき次の各問に答えなさい。ただし円周率は$\pi$とする。
①
関数$y=x^2$について、$x$の変域が$-3 \leqq x\leqq 2$のときの$y$の変域を求めなさい。
②
2点$P,Q$の$x$座標をそれぞれ$1$と$3$とする。
図2のように、$\triangle APQ$を原点$O$を中心として矢印の方向に$360°$回転移動させ、$\triangle APQ$が回転移動しながら通った部分に色をつけた。
このとき色がついている図形の面積を求めなさい。
③
2点$P,Q$の$x$座標をそれぞれ$3$と$4$とする。
直線$OA$上に四角形$OPQA$と$\triangle OPR$の面積が等しくなるように点$R$を取るとき、$R$の座標を求めなさい。
ただし$R$の$x$座標は負とする。
投稿日:2021.01.28