平方数にならない式 - 質問解決D.B.(データベース)

平方数にならない式

問題文全文(内容文):
nを自然数とする.
$n(n+1)(n+2)(n+3)$は平方数でないことを示せ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを自然数とする.
$n(n+1)(n+2)(n+3)$は平方数でないことを示せ.
投稿日:2022.07.21

<関連動画>

教え子に授業させてみた

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2a^2+(8-b)a-4b=2021$
正の整数a,bの組(a,b)をすべて求めよ。
この動画を見る 

千葉大 漸化式 証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{n}\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}$
$n \geqq 2$の自然数

(1)
$a_{n}$は整数

(2)
$a_{n}$を3で割ると余りは2である

出典:2013年千葉大学 過去問
この動画を見る 

数列・合同式 前橋工科大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$ $a_n=3a_{n-1}+3^n$

(1)
$a_n$

(2)
$\displaystyle \sum_{k=1}^n a_k$

(3)
$a_n+n-2$は4つの倍数を示せ

出典:2000年前橋工科大学 過去問
この動画を見る 

早稲田高等学院 高校入試に九九!?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
九九の表の81個の数の積を素因数分解せよ.

早稲田高等学院過去問
この動画を見る 

整数問題 日比谷高校

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
nを117以下の自然数とする。
$\frac{n}{117}$が約分できない分数となるnはいくつあるか。
日比谷高等学校
この動画を見る 
PAGE TOP