大学入試でなく高校入試だよ。定数項を求めよ。2通りで解説。2024早稲田本庄(改) - 質問解決D.B.(データベース)

大学入試でなく高校入試だよ。定数項を求めよ。2通りで解説。2024早稲田本庄(改)

問題文全文(内容文):
$\frac{1}{2024} (8x+\frac{11}{x}+23) (8x+\frac{11}{x}-23) (8x-\frac{11}{x}+23)$
の展開式における定数項は?
2024早稲田大学 本庄高等学院(改)
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{2024} (8x+\frac{11}{x}+23) (8x+\frac{11}{x}-23) (8x-\frac{11}{x}+23)$
の展開式における定数項は?
2024早稲田大学 本庄高等学院(改)
投稿日:2024.02.11

<関連動画>

16京都府教員採用試験(数学:2番 背理法)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣ $\log_{ 2 } 3$は無理数を示せ。
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第2問(2)〜ルートが自然数になる条件

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)$n$を自然数とする。$\sqrt{\frac{200}{\sqrt n}}$が自然数となるような$n$をすべて求めると$n$=$\boxed{\ \ サ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

対偶法と背理法の証明の全パターン①【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$mn$が偶数ならば、$m,n$のうち少なくとも1つは偶数であることを示せ。
ただし、$m,n$は整数とする。

(2)
$\sqrt{ 2 }$が無理数であることを示せ。
この動画を見る 

正方形と平行四辺形 どっちが大きい?

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
面積を比べたとき大きいのはどっち?
*マッチ棒は同じ
A.正方形
B.平行四辺形
C.同じ

*図は動画内参照
この動画を見る 

【数Ⅰ】【2次関数】2次関数の決定 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たすような放物線の方程式を求めよ。
 (1) 放物線 y=-3x²+x-1を平行移動した曲線で,頂点が点(-2,3)である。
 (2) 放物線 y=x²-3xを平行移動した曲線で,2点 (2,1),(4,5)を通る。

2つの放物線y=x²-3x, y=1/2x²+ax+bの頂点が一致するように,定数a,bの値を定めよ。

(1) 放物線y=x²-3x十4を平行移動した曲線で,点(2, 4)を通り,頂点が直線y=2x+1上にある放物線の方程式を求めよ。
(2) 放物線y=-2x²+5xを平行移動した曲線で,点(1, -3)を通り,頂点が放物線y=x²十4上にある放物線の方程式を求めよ。
この動画を見る 
PAGE TOP