福田のおもしろ数学441〜ガウス記号を使って定義された数列の極限 - 質問解決D.B.(データベース)

福田のおもしろ数学441〜ガウス記号を使って定義された数列の極限

問題文全文(内容文):

$a_n=\dfrac{1}{n^2} \displaystyle \sum_{k=1}^n [\sqrt{2n^2-k^2}]$とするとき、

$\displaystyle \lim_{n\to\infty} a_n$を求めて下さい。

$[x]$は$x$を超えない最大の整数とする。
   
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$a_n=\dfrac{1}{n^2} \displaystyle \sum_{k=1}^n [\sqrt{2n^2-k^2}]$とするとき、

$\displaystyle \lim_{n\to\infty} a_n$を求めて下さい。

$[x]$は$x$を超えない最大の整数とする。
   
投稿日:2025.03.18

<関連動画>

e話

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$e=\displaystyle\lim_{n \to \infty}(1+\frac{1}{n})^n$
$\displaystyle\lim_{n \to -\infty}(1+\frac{1}{n})^n=e$を示せ
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第2問〜定積分で表された関数と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ nを自然数、aを正の定数とする。関数f(x)は等式
$f(x)=x+\displaystyle\frac{1}{n}\int_0^xf(t)dt$
を満たし、関数g(x)は$g(x)$=$ae^{-\frac{x}{n}}+a$とする。2つの曲線y=f(x)とy=g(x)はある1点を共有し、その点における2つの接線が直交するとき、次の問いに答えよ。ただし、eは自然対数の底とする。
(1)h(x)=$e^{-\frac{x}{n}}f(x)$とおくとき、導関数h'(x)とh(x)を求めよ。
(2)aをnを用いて表せ。
(3)2つの曲線y=f(x), y=g(x)とy軸で囲まれた部分の面積を$S_n$とするとき、
極限値$\displaystyle\lim_{n \to \infty}\frac{S_1+S_2+\cdots+S_n}{n^3}$ を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

三角関数の極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
関西医科大学過去問題
$\displaystyle\lim_{(x \to \pi)}\frac{sinx}{x^2-\pi^2}$
この動画を見る 

福田の数学〜立教大学2024年理学部第1問(3)〜対数関数の極値と級数の和

アイキャッチ画像
単元: #関数と極限#積分とその応用#数列の極限#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$$nは自然数とする。
f_{ n }(x)=x^{ \frac{ 1 }{ n }}\log x (x \gt0)がx=a_{ n }で極小値をとるとき、$$
$$a_{ n }=\boxed{ エ }である。このとき、\displaystyle \sum_{i=1}^n a_n=\boxed{ オ }である。$$
この動画を見る 

【数Ⅲ】【関数と極限】次の無限級数の収束、発散について調べ、収束する場合は、その和を求めよ。(1) 2 + 2/1+2 + 2/1+2+3 +・・・+ 2/1+2+3+…+n +・・・他

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無限級数の収束・発散について調べ,収束する場合はその和を求めよ。

(1)$2+\frac{2}{1+2} + \frac{2}{1+2+3} + \frac{2}{1+2+3+4} + \cdots$

(2)$\frac{1}{3} + \frac{1}{3+5} + \frac{1}{3+5+7} + \cdots + \frac{1}{3+5+7+\cdots+(2n+1)} + \cdots$
この動画を見る 
PAGE TOP