【数学】2022年度神奈川県立高校入試数学大問2 - 質問解決D.B.(データベース)

【数学】2022年度神奈川県立高校入試数学大問2

問題文全文(内容文):
(ア)$0.2x+0.8y=1,\dfrac{1}{2}x+\dfrac{7}{8}y=-2$

(イ)$4x^2-x-2=0$

(ウ)$y=\dfrac{-1}{4}x^2,$xの変域が$-2\leqq x\leqq 4$のとき,yの変域は?

(エ)A班の生徒と,A班よりも5人少ないB班の生徒で,体育館にイスを並べた。A班の生徒はそれぞれ3脚ずつ並べ、B班の生徒はそれぞれ4脚ずつ並べたところ,A班の生徒が並べたイスの総数はB班の生徒が並べたイスの総数より3脚多かった。A班の生徒の人数を求めなさい。

(オ)$x=\sqrt6+\sqrt3,y=\sqrt6-\sqrt3$ のとき、$x^2y+xy^2$の値は?
チャプター:

0:00 オープニング
0:05 (ア)
2:22 (イ)
3:45 (ウ)
5:22 (エ)
6:30 (オ)
8:17 エンディング

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(ア)$0.2x+0.8y=1,\dfrac{1}{2}x+\dfrac{7}{8}y=-2$

(イ)$4x^2-x-2=0$

(ウ)$y=\dfrac{-1}{4}x^2,$xの変域が$-2\leqq x\leqq 4$のとき,yの変域は?

(エ)A班の生徒と,A班よりも5人少ないB班の生徒で,体育館にイスを並べた。A班の生徒はそれぞれ3脚ずつ並べ、B班の生徒はそれぞれ4脚ずつ並べたところ,A班の生徒が並べたイスの総数はB班の生徒が並べたイスの総数より3脚多かった。A班の生徒の人数を求めなさい。

(オ)$x=\sqrt6+\sqrt3,y=\sqrt6-\sqrt3$ のとき、$x^2y+xy^2$の値は?
投稿日:2023.02.02

<関連動画>

ルートの中のルートの中にルートがある。2024中大杉並

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{\sqrt{90-\sqrt{81}}+\sqrt{240+\sqrt{256}}}$
中央大学杉並高等学校2024
この動画を見る 

福島大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z \neq 1,z^7-1=0$
証明せよ。
(1)
$w=z+\displaystyle \frac{1}{z}$とすると、$w^3+w^2-2w-1=0$

(2)
$a=\cos \displaystyle \frac{2}{7}\pi$とすると、$8a^3+4a^2-4a-1=0$

出典:2005年福島大学 過去問
この動画を見る 

東工大(’86)整数 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京工業大学'86過去問題
整数$a_n = 19^n+(-1)^{n-1}・2^{4n-3}$
$(n=1,2,3\cdots)$
のすべてを割り切る素数を求めよ。
この動画を見る 

2023東工大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^3-x)^2(y^3-y)=86400$
整数$x,y$を求めよ.

2023東工大過去問
この動画を見る 

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART1)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 
PAGE TOP