「二次不等式の解の条件②」【高校数学ⅠA】を宇宙一わかりやすく - 質問解決D.B.(データベース)

「二次不等式の解の条件②」【高校数学ⅠA】を宇宙一わかりやすく

問題文全文(内容文):
以下の2次方程式がただ1つの共通な実数解をもつような定数$k$の値を求めよ。
また、その共通会を求めよ。
$x^2+(k-4)x-2=0$ ・・・①
$x^2-2x-k=0$ ・・・②

次の問いに答えよ。
(1)
すべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。

(2)
すべての実数$x$について不等式$(k-2)x^2-2(k-1)x+3k-5 \geqq 0$が成り立つような$k$の値の範囲を求めよ。

(3)
2次不等式$x^2-kx+k+3 \leqq 0$を満たす実数$x$が存在するような定数$k$の値の範囲を求めよ。

(4)
$x \geqq 2$を満たすすべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。

(5)
$-2 \leqq x \leqq 0$を満たすすべての実数$x$について、2次不等式$x^2-2kx-3k+4 \geqq 0$が成り立つような$k$の範囲を求めよ。
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の2次方程式がただ1つの共通な実数解をもつような定数$k$の値を求めよ。
また、その共通会を求めよ。
$x^2+(k-4)x-2=0$ ・・・①
$x^2-2x-k=0$ ・・・②

次の問いに答えよ。
(1)
すべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。

(2)
すべての実数$x$について不等式$(k-2)x^2-2(k-1)x+3k-5 \geqq 0$が成り立つような$k$の値の範囲を求めよ。

(3)
2次不等式$x^2-kx+k+3 \leqq 0$を満たす実数$x$が存在するような定数$k$の値の範囲を求めよ。

(4)
$x \geqq 2$を満たすすべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。

(5)
$-2 \leqq x \leqq 0$を満たすすべての実数$x$について、2次不等式$x^2-2kx-3k+4 \geqq 0$が成り立つような$k$の範囲を求めよ。
投稿日:2020.12.09

<関連動画>

福田の1.5倍速演習〜合格する重要問題069〜千葉大学2017年度理系第8問〜放物線上の3点を頂点とする三角形の面積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{8}}$ tを0以上の実数とし、Oを原点とする座標平面上の2点P($p, p^2$), Q($q, q^2$)で3つの条件
PQ=2, p<q, p+q=$\sqrt t$
を満たすものを考える。$\triangle OPQ$の面積をSとする。ただし、点Pまたは点Qが原点Oと一致する場合はS=0とする。
(1) pとqをそれぞれtを用いて表せ。
(2) Sをtを用いて表せ。
(3) S=1となるようなtの個数を求めよ。

2017千葉大学理系過去問
この動画を見る 

【高校数学】  数Ⅰ-73  特殊な最大・最小③

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎x,yが$x^2+y^2=16$を満たすとき、$6x+y^2$の最大値と最小値を求めよう。
この動画を見る 

【数Ⅰ】【2次関数】関数の場合分け ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1) y=-x+2 (x<2) , y=x-2 (x≧2)
(2) y=1 (x<0) , y=x+1 (x≧0)
(3) y=x² (x<0) , y=x (0≦x<1) , y=-x²+2x (1≦x)
この動画を見る 

福田の数学〜千葉大学2023年第3問〜2次関数と定積分で表された関数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 以下の問いに答えよ。
(1)$p$を実数とする。曲線$y$=|$x^2$+$x$-2|と直線$y$=$x$+$p$ の共有点の個数を求めよ。
(2)等式$f(x)$=$x^2$+$\displaystyle\int_{-1}^2(xf(t)-t)dt$ を満たす関数$f(x)$を求めよ。
この動画を見る 

福田のわかった数学〜高校1年生第47回。三角形への応用(4)内心

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
右の図において$I$は$\triangle ABC$の内心.$AB=5,BC=10,CA=7$のとき,$AI=?$
この動画を見る 
PAGE TOP