中学レベル 倍数の見分け方の証明 - 質問解決D.B.(データベース)

中学レベル 倍数の見分け方の証明

問題文全文(内容文):
$x,y,z$は1~9の整数である.
$XX+YY+ZZ=XYZ$
これを解け.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は1~9の整数である.
$XX+YY+ZZ=XYZ$
これを解け.
投稿日:2021.11.30

<関連動画>

数学オリンピック 整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1111^{2018}$を$11111$で割った余りを求めよ.
この動画を見る 

整数問題やや難

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,nを自然数とする.
$2^n+17=m^4$
,これを解け.
この動画を見る 

福田の数学〜早稲田大学2021年商学部第3問〜正の約数の総和が奇数になる条件

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 次の設問に答えよ。
(1)$225$の全ての正の約数の和を求めよ。
(2)$2021$以下の正の整数で、すべての正の約数の和が奇数であるものの個数を求めよ。

2021早稲田大学商学部過去問
この動画を見る 

割って余る問題 整数問題 日大習志野

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
200より大きい自然数を17で割った。
商と余りが等しくなる自然数は全部で何コ?

日本大学習志野高等学校
この動画を見る 

Σと合同式OnlineMathContest

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1\leqq S,t\leqq 2020$であり,$S$は整数,$t$は奇数である.
$\displaystyle \sum_{k=1}^S k^t$が$S$の倍数となる$(s,t)$の組数を求めよ.
この動画を見る 
PAGE TOP