東京医科大 極限値 - 質問解決D.B.(データベース)

東京医科大 極限値

問題文全文(内容文):
$a_n=7n^2+n(n$自然数$)$
$\displaystyle \lim_{ n \to \infty } log(\displaystyle \frac{a_{n+1}-6}{a_n})^{9n}$

出典:東京医科大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=7n^2+n(n$自然数$)$
$\displaystyle \lim_{ n \to \infty } log(\displaystyle \frac{a_{n+1}-6}{a_n})^{9n}$

出典:東京医科大学 過去問
投稿日:2020.02.23

<関連動画>

福田の1.5倍速演習〜合格する重要問題014〜東京大学2016年度理系数学第1問〜eの定義と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
eを自然対数の底、すなわち$e=\lim_{t \to \infty}\left(1+\frac{1}{t}\right)^t$とする。
すべての正の実数xに対し、次の不等式が成り立つことを示せ。
$\left(1+\frac{1}{x}\right)^x \lt e \lt \left(1+\frac{1}{x}\right)^{x+\frac{1}{2}}$

2016東京大学理系過去問
この動画を見る 

高専数学 微積I p 62ex(2) 広義積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\infty}\log \left(1+\dfrac{3}{x^2}\right)dx$
を計算せよ.
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第4問(2)〜円が直線から切り取る線分の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)$t \gt 0$とし、xy平面上の直線
$l:y=-x+t$
と領域
$B:x^2+(y-2)^2 \leqq \frac{1}{4}t^2$
を考える。Bとlが2点以上で交わるとき、交わりとして得られる線分の長さは
$t=\boxed{ム}$のときに最大値$\boxed{メ}\sqrt{\boxed{モ}}$をとる。

2022上智大学文系過去問
この動画を見る 

高専数学 微積I #234(1)(2) 極座標表示の曲線の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
(1)曲線$r=\theta^2\left(0\leqq \theta \leqq \dfrac{\theta}{2}\right)$と
半直線$\theta=\dfrac{\theta}{2}$で囲まれた図形の面積を求めよ.

(2)曲線$r=\cos\theta+2(0\leqq \theta \leqq 2\pi)$で囲まれた
図形の面積を求めよ.
この動画を見る 

福田のおもしろ数学379〜関数の偶奇性の判定

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\frac{x}{1-2^x}-\frac{x}{2}$について正しい記述を以下から1つ選べ。
(a) 偶関数であるが奇関数ではない。
(b) 奇関数であるが偶関数ではない。
(c) 偶関数かつ奇関数である。
この動画を見る 
PAGE TOP