福田の数学〜慶應義塾大学薬学部2025第4問〜確率と期待値と無限級数 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学薬学部2025第4問〜確率と期待値と無限級数

問題文全文(内容文):

$\boxed{4}$

当たりくじが$3$本入っている$9$本のくじがある。
このくじを無作為に$1$本引き、
当たりくじかどうかを確認してから元に戻す試行を、
当たりくじが出るまで繰り返す。
当たりくじが出たときのみ得点を得ることができ、
$n$回目にの試行で当たりくじが出た場合、
得られる得点は$50n$点とする。

$n$回目に得られる得点の期待値を$E_n$とする。
ただし、$n$は自然数とする。

(1)$5$回目までに当たりくじが出る確率は$\boxed{ノ}$である。

(2)$\dfrac{E_n}{E_{n+1}}=\dfrac{10}{7}$であるとき、$n=\boxed{ハ}$である。

(3)$\displaystyle \lim_{n\to\infty}\dfrac{E_n}{E_{n+1}}$を求めると$\boxed{ヒ}$である。

(4)$\displaystyle \sum_{k=1}^{n}E_k$を$n$の式で表すと$\boxed{フ}$であり、

$\displaystyle \sum_{k=1}^{\infty}E_k$を求めると$\boxed{ヘ}$である。

ただし、$\vert r \vert \lt 1$を満たす実数$r$に対し、

$\displaystyle \lim_{n\to\infty}n \times r^n=0$が

成り立つこととする。

$2025$年慶應義塾大学薬学部過去問題
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

当たりくじが$3$本入っている$9$本のくじがある。
このくじを無作為に$1$本引き、
当たりくじかどうかを確認してから元に戻す試行を、
当たりくじが出るまで繰り返す。
当たりくじが出たときのみ得点を得ることができ、
$n$回目にの試行で当たりくじが出た場合、
得られる得点は$50n$点とする。

$n$回目に得られる得点の期待値を$E_n$とする。
ただし、$n$は自然数とする。

(1)$5$回目までに当たりくじが出る確率は$\boxed{ノ}$である。

(2)$\dfrac{E_n}{E_{n+1}}=\dfrac{10}{7}$であるとき、$n=\boxed{ハ}$である。

(3)$\displaystyle \lim_{n\to\infty}\dfrac{E_n}{E_{n+1}}$を求めると$\boxed{ヒ}$である。

(4)$\displaystyle \sum_{k=1}^{n}E_k$を$n$の式で表すと$\boxed{フ}$であり、

$\displaystyle \sum_{k=1}^{\infty}E_k$を求めると$\boxed{ヘ}$である。

ただし、$\vert r \vert \lt 1$を満たす実数$r$に対し、

$\displaystyle \lim_{n\to\infty}n \times r^n=0$が

成り立つこととする。

$2025$年慶應義塾大学薬学部過去問題
投稿日:2025.04.14

<関連動画>

適当に着陸してロシアだった?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
適当に着陸した場所がロシアである確率を求める動画です
この動画を見る 

福田の数学〜東北大学2024年理系第3問〜確率漸化式と複素数平面の融合

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $n$ を2以上の整数とする。それぞれ $A$, $A$, $B$ と書かれた $3$ 枚のカードから無作為に $1$ 枚抜き出し、カードをもとに戻す試行を考える。この試行を $n$ 回繰り返し、抜き出したカードの文字を順に左から右に並べ、$n$ 文字の文字列を作る。作った文字列内に $AAA$ の並びがある場合は 不可 とする。また、作った文字列内に $BB$ の並びがある場合も 不可 とする。これらの場合以外は 可 とする。

例えば $n = 6$ のとき、文字列 $AAAABA$ や $ABBBAA$ や $ABBABB$ や $BBBAAA$ などは 不可 で、文字列 $BABAAB$ や $BABABA$ などは 可 である。
作った文字列が 可 でかつ右端の $2$ 文字が $AA$ である確率を $p_n$、作った文字列が 可 でかつ右端の $2$ 文字が $BA$ である確率を $q_n$、作った文字列が 可 でかつ右端の文字が $B$ である確率を $r_n$ とそれぞれおく。

(1) $p_2$, $q_2$, $r_2$ をそれぞれ求めよ。また、$p_{n+1}$, $q_{n+1}$, $r_{n+1}$ を $p_n$, $q_n$, $r_n$ を用いてそれぞれ表せ。
(2)$p_n$+$2q_n$+$2r_n$を$n$を用いて表せ。
(3)$p_n$+$iq_n$-$(1+i)r_n$を$n$を用いて表せ。ただし、$i$は虚数単位である。
(4)$p_n$=$r_n$ を満たすための、$n$の必要十分条件を求めよ。
この動画を見る 

【数A】確率:東北大 2008年 大問4(2)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Pが次のルール (i), (i) に従って数直線上を移動するものとする。
(i)$1,2,3,4,5,6$の目が同じ割合で出るサイコロを振り, 出た目の数をkとする.
(ii)Pの座標aについて, $a\gt 0$ならば座標$a-k$の点へ移動し, $a\gt 0$ならば座標$a+k$の点へ移動する.
(iii)原点に移動したら終了し, そうでなければ(i) を繰り返す。

(2) Pの座標が$1,2,... 6$ のいずれかであるとき,
ちょうど n回サイコロを振って
原点で終了する確率を求めよ.
この動画を見る 

佐藤さんですか?と聞いて当たる確率は?

アイキャッチ画像
単元: #数A#場合の数と確率#確率
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
街中の人に「あなたは佐藤さんですか?」って聞いて的中する確率は?
この動画を見る 

場合の数、具体的に求める?一般的に求める?

アイキャッチ画像
単元: #場合の数と確率
指導講師: 鈴木貫太郎
問題文全文(内容文):
n人を3つのグループに分ける。それぞれ何通りか?
・0人は不可
・グループに名前はない
・個人は区別する
(1)n=4
(2)n=5
(3)n=6
(4)n=k
この動画を見る 
PAGE TOP