2021東海大(医)複素数の回転移動 - 質問解決D.B.(データベース)

2021東海大(医)複素数の回転移動

問題文全文(内容文):
$z=\cos\dfrac{13}{12}\pi+i \sin\dfrac{13}{12}\pi$を$\Box+\Box i$を中心に
$\dfrac{\pi}{6}$だけ回転させると,$\omega=\cos\dfrac{17}{12}\pi+i\sin\dfrac{17}{12}\pi$

2021東海大(医)
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos\dfrac{13}{12}\pi+i \sin\dfrac{13}{12}\pi$を$\Box+\Box i$を中心に
$\dfrac{\pi}{6}$だけ回転させると,$\omega=\cos\dfrac{17}{12}\pi+i\sin\dfrac{17}{12}\pi$

2021東海大(医)
投稿日:2021.02.06

<関連動画>

これできる?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
これできる?
※問題文は動画内参照
この動画を見る 

複素数の2次方程式・2通りの解法で

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ z^2=5-12i$
これを解け.
この動画を見る 

早稲田大(商)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2+x+2)^{99}$
$=a_0+a_1x+a_2x^2+a_3x^3+…+a_{198}x^{198}$
$x^2+x+1=0$の1つの解を$\omega$とする

(2)
$f(\omega)$の値を求めよ

(2)
$S=\displaystyle \sum_{k=0}^{66} a_{3k}=a_0+a_3+a_6+…+a_{198}$

出典:1999年早稲田大学 商学部 過去問
この動画を見る 

千葉大 複素数 極形式 7乗根

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#千葉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$

(1)
$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6$

(2)
$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)$
$(1-\alpha^5)(1-\alpha^6)$

(1)(2)それぞれ値を求めよ

出典:千葉大学 過去問
この動画を見る 

複素数の10乗の虚部の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{1+\sqrt{7} i}{2})^{10}$
虚数部分を求めよ
$ \sin α =\sqrt{\displaystyle \frac{7}{8}}$
$\displaystyle \frac{3π}{8} \lt a \lt \displaystyle \frac{12π}{31}$
この動画を見る 
PAGE TOP