福田の数学〜青山学院大学2021年理工学部第5問〜絶対値の付いた関数と面積の最大最小 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2021年理工学部第5問〜絶対値の付いた関数と面積の最大最小

問題文全文(内容文):
${\Large\boxed{5}}$tを$0 \leqq t \leqq \frac{\pi}{2}$を満たす定数とする。関数
$f(x)=|\sin x-\sin t|  (0 \leqq x \leqq \pi)$
について、以下の問いに答えよ。
(1)$t=\frac{\pi}{6}$のとき$y=f(x) (0 \leqq x \leqq \pi)$のグラフを描け。

(2)$y=f(x) (0 \leqq x \leqq \pi)$のグラフとx軸、y軸および直線$x=\pi$
で囲まれた図形の面積をSとする。Sをtを用いて表せ。

(3)tが$\leqq t \leqq \frac{\pi}{2}$の範囲を動くときのSの最大値と最小値を求めよ。

2021青山学院大学理工学部過去問
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$tを$0 \leqq t \leqq \frac{\pi}{2}$を満たす定数とする。関数
$f(x)=|\sin x-\sin t|  (0 \leqq x \leqq \pi)$
について、以下の問いに答えよ。
(1)$t=\frac{\pi}{6}$のとき$y=f(x) (0 \leqq x \leqq \pi)$のグラフを描け。

(2)$y=f(x) (0 \leqq x \leqq \pi)$のグラフとx軸、y軸および直線$x=\pi$
で囲まれた図形の面積をSとする。Sをtを用いて表せ。

(3)tが$\leqq t \leqq \frac{\pi}{2}$の範囲を動くときのSの最大値と最小値を求めよ。

2021青山学院大学理工学部過去問
投稿日:2021.09.14

<関連動画>

大学入試問題#503「微分してもよさげだけど・・・」 #藤田医科大学 (2023) #判別式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{8x^2+5}{x^2-3x+6}$
の最大値を$M$、最小値を$m$とするとき$\displaystyle \frac{M}{m}$を求めよ

出典:2023年藤田医科大学 入試問題
この動画を見る 

e^πとπ^e どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#微分法と積分法#指数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$e^π$と$π^e$どっちがでかい?
この動画を見る 

横国大・滋賀大 積・商の微分 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
滋賀大学過去問題
①$\{ f(x)g(x) \} '= f'(x)g(x)+f(x)g'(x) $
②$\frac{d}{dx} \{ f(x) \}^n =n \{ f(x) \}^{n-1}・f'(x)$

横浜国立大学過去問題
$x^3+a(x^2+x-1)=0$が相異3実数解をもつaの範囲
この動画を見る 

中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体
この動画を見る 

福田のわかった数学〜高校3年生理系079〜グラフを描こう(1)分数関数のグラフ

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(1)

$y=\frac{x^2}{x-1}$のグラフを描け。

ただし凹凸は調べなくてよい。
この動画を見る 
PAGE TOP