整式の剰余(訂正版) - 質問解決D.B.(データベース)

整式の剰余(訂正版)

問題文全文(内容文):
$n$は自然数である.
$x^{6n}$を$x^4+x^2+1$で割った余りを求めよ.
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$x^{6n}$を$x^4+x^2+1$で割った余りを求めよ.
投稿日:2020.06.04

<関連動画>

09三重県教員採用試験(数学:4番 不等式)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$\log_{10} ({n}_n \mathrm{C}_0+{n}_n \mathrm{C}_1+・・・・・・+{n}_n \mathrm{C}_n)\gt 4$
をみたす最小の自然数$n$を求めよ.
この動画を見る 

ネイピア数の分数式がスッキリきれいな数字に

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\dfrac{e}{\sqrt e}・\dfrac{\sqrt[3]{e}}{\sqrt[4]{e}}・\dfrac{\sqrt[5]{e}}{\sqrt[6]{e}}・・・・・・=?$
この動画を見る 

【数Ⅱ】式と証明:相加相乗平均の使い方 その①

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a\gt 0$のとき(1)$a+\dfrac{9}{a}$(2)$a+\dfrac{16}{a+2}$(3)$3a+\dfrac{1}{a}$ の最小値をそれぞれ求めよ。
この動画を見る 

【数Ⅱ】【式と証明】整式の割り算1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の各場合について、定数$a,b$の値を求めよ。
(1) $2x^2+ax+10$を$x^2-3x+b$で割ると、余りが$3x-2$ である。
(2) $x^3+ax^2-5x+4$を$x^2+bx-2$で割ると、余りが$2$である。
この動画を見る 

二項定理

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
二項定理
$(x+y)^n=?$
この動画を見る 
PAGE TOP