問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(13) 関数方程式\\
x \gt 0 で定義された微分可能な関数f(x)において、f(xy)=f(x)+f(y)\\
が正の数x,\ yに対して常に成り立ち、f'(1)=1とする。\\
\\
(1)f(1) を求めよ。\\
(2)f'(x)=\frac{1}{x} を示せ。
\end{eqnarray}
\begin{eqnarray}
数学\textrm{III} 微分(13) 関数方程式\\
x \gt 0 で定義された微分可能な関数f(x)において、f(xy)=f(x)+f(y)\\
が正の数x,\ yに対して常に成り立ち、f'(1)=1とする。\\
\\
(1)f(1) を求めよ。\\
(2)f'(x)=\frac{1}{x} を示せ。
\end{eqnarray}
単元:
#微分とその応用#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(13) 関数方程式\\
x \gt 0 で定義された微分可能な関数f(x)において、f(xy)=f(x)+f(y)\\
が正の数x,\ yに対して常に成り立ち、f'(1)=1とする。\\
\\
(1)f(1) を求めよ。\\
(2)f'(x)=\frac{1}{x} を示せ。
\end{eqnarray}
\begin{eqnarray}
数学\textrm{III} 微分(13) 関数方程式\\
x \gt 0 で定義された微分可能な関数f(x)において、f(xy)=f(x)+f(y)\\
が正の数x,\ yに対して常に成り立ち、f'(1)=1とする。\\
\\
(1)f(1) を求めよ。\\
(2)f'(x)=\frac{1}{x} を示せ。
\end{eqnarray}
投稿日:2021.08.27