福田のわかった数学〜高校3年生理系068〜微分(13)関数方程式 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系068〜微分(13)関数方程式

問題文全文(内容文):
数学$\textrm{III}$ 微分(13) 関数方程式
$x \gt 0$ で定義された微分可能な関数$f(x)$において、$f(xy)=f(x)+f(y)$
が正の数$x,\ y$に対して常に成り立ち、$f'(1)=1$とする。

(1)$f(1)$ を求めよ。
(2)$f'(x)=\frac{1}{x}$ を示せ。
単元: #微分とその応用#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(13) 関数方程式
$x \gt 0$ で定義された微分可能な関数$f(x)$において、$f(xy)=f(x)+f(y)$
が正の数$x,\ y$に対して常に成り立ち、$f'(1)=1$とする。

(1)$f(1)$ を求めよ。
(2)$f'(x)=\frac{1}{x}$ を示せ。
投稿日:2021.08.27

<関連動画>

【高校数学】数Ⅲ-112 接線と法線⑤(共通接線編)

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2つの曲線$y=\dfrac{4}{x},y=x^2+kx$が点$A$で共通接線をもつように、
定数$k$の値を求めよ。

②2つの曲線$y=e^x,y=\log(x+2)$の共通接線の方程式を求めよ。
この動画を見る 

微分方程式⑩-2【定数係数でない微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

(3)$t^2\dfrac{d^2x}{dt^2}-3t\dfrac{dx}{dt}+4x=0$
(4)$t^2\dfrac{d^2x}{dt^2}+3t\dfrac{dx}{dt}+x=0$
この動画を見る 

【数Ⅲ】微分の応用:漸近線があるグラフの概形part1

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)= 2x+\sqrt{x^2-1}$ の漸近線を求めよ
この動画を見る 

山形(医他)4次関数と接線 積分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'89山形大学過去問題
$f(x)=x^4-6a^2x^2+5a^4$ (a>0)
(a,0)における接線l。
f(x)とlとで囲まれる面積
この動画を見る 

微分のよく出る問題!解けますか?【数学 入試問題】【東京電機大学】

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
曲線$y=\dfrac{\log(ax)}{x^2}$の傾きが$9e^2$の接線が原点を通るとき、正の定数$a$を求めよ。

東京電機大過去問
この動画を見る 
PAGE TOP