問題文全文(内容文):
数学$\textrm{III}$ 微分(13) 関数方程式
$x \gt 0$ で定義された微分可能な関数$f(x)$において、$f(xy)=f(x)+f(y)$
が正の数$x,\ y$に対して常に成り立ち、$f'(1)=1$とする。
(1)$f(1)$ を求めよ。
(2)$f'(x)=\frac{1}{x}$ を示せ。
数学$\textrm{III}$ 微分(13) 関数方程式
$x \gt 0$ で定義された微分可能な関数$f(x)$において、$f(xy)=f(x)+f(y)$
が正の数$x,\ y$に対して常に成り立ち、$f'(1)=1$とする。
(1)$f(1)$ を求めよ。
(2)$f'(x)=\frac{1}{x}$ を示せ。
単元:
#微分とその応用#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(13) 関数方程式
$x \gt 0$ で定義された微分可能な関数$f(x)$において、$f(xy)=f(x)+f(y)$
が正の数$x,\ y$に対して常に成り立ち、$f'(1)=1$とする。
(1)$f(1)$ を求めよ。
(2)$f'(x)=\frac{1}{x}$ を示せ。
数学$\textrm{III}$ 微分(13) 関数方程式
$x \gt 0$ で定義された微分可能な関数$f(x)$において、$f(xy)=f(x)+f(y)$
が正の数$x,\ y$に対して常に成り立ち、$f'(1)=1$とする。
(1)$f(1)$ を求めよ。
(2)$f'(x)=\frac{1}{x}$ を示せ。
投稿日:2021.08.27