福田のわかった数学〜高校3年生理系068〜微分(13)関数方程式 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系068〜微分(13)関数方程式

問題文全文(内容文):
数学$\textrm{III}$ 微分(13) 関数方程式
$x \gt 0$ で定義された微分可能な関数$f(x)$において、$f(xy)=f(x)+f(y)$
が正の数$x,\ y$に対して常に成り立ち、$f'(1)=1$とする。

(1)$f(1)$ を求めよ。
(2)$f'(x)=\frac{1}{x}$ を示せ。
単元: #微分とその応用#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(13) 関数方程式
$x \gt 0$ で定義された微分可能な関数$f(x)$において、$f(xy)=f(x)+f(y)$
が正の数$x,\ y$に対して常に成り立ち、$f'(1)=1$とする。

(1)$f(1)$ を求めよ。
(2)$f'(x)=\frac{1}{x}$ を示せ。
投稿日:2021.08.27

<関連動画>

福田の数学〜北海道大学2025文系第4問〜関数方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

関数$f(x)$は、

すべての実数$x$およびすべての整数$n$について

$f(nx)={f(x)}^n$を満たし、

さらに$f(1)=2$を満たすとする。

ただし、$f(x)$のとりうる値は$0$でない実数とする。

(1)$f(n) \leqq 100$となるような最大の整数$n$を求めよ。

(2)すべての実数$x$について

$f(x)\gt 0$であることを証明せよ。

(3)$f(0.25)$を求めよ。

(4)$a$が有理数のとき、$f(a)$を$a$で表せ。

$2025$年北海道大学文系過去問題
この動画を見る 

【数Ⅲ】【微分とその応用】平均値の定理の利用4 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
平均値の定理を用いて、次の極限を求めよ。
(1) lim[x→+0](e^x-e^(tanx))/(x-tanx)
(2) lim[x→ 0](e^x-e^(sinx))/(x-sinx)
(3) lim[x→∞]x{log(x+2)-logx}
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用2 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
 次のことが成り立つことを証明せよ。

(1) $b≧a>0$のとき $logb-loga≧\displaystyle \frac{2(b-a)}{(b+a)}$

(2) $0<α<β≦\displaystyle \frac{π}{2}$のとき $\displaystyle \frac{α}{β}<\displaystyle \frac{sin α}{sin β}$

この動画を見る 

福田のおもしろ数学391〜簡単な関数方程式

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
任意の実数$x,y$に対して$f(0)=1$、

$f(xy+1)=f(x)f(y)-f(y)-x+2$

が成り立つような実数値関数$f(x)$をすべて求めて下さい。
この動画を見る 

【数Ⅲ】微分法: 微分係数の利用! f'(a)が存在するとき、次の極限をf(a),f'(a)で表せ。(1)lim(h→0){f(a+4h)-f(a+2h)}/h

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f'(a)$が存在するとき、次の極限を$f(a),f'(a)$で表せ。
(1)$\displaystyle \lim_{h\to 0}\dfrac{f(a+4h)-f(a+2h)}{h}$

この動画を見る 
PAGE TOP