【高校数学】不等式の例題~難しいものも解こうよ~ 1-14.5【数学Ⅰ】 - 質問解決D.B.(データベース)

【高校数学】不等式の例題~難しいものも解こうよ~ 1-14.5【数学Ⅰ】

問題文全文(内容文):
(1) |$x$| + |$x-2$| $\lt x + 1$

(2)次の連立不等式を満たす整数$x$がちょうど3個存在するような定数$a$の値の
  範囲を求めよ。
  $\begin{eqnarray}
\begin{cases}
5x - 2 \gt 3x …①\\
x-a \lt 0 …②
\end{cases}
\end{eqnarray}$

(3) $ax + a \lt a^2 + x$ 解け。ただし、$a$は定数とする。
チャプター:

00:00 はじまり

00:25 問題だよん

00:42 問題解説(1)

09:54 問題解説(2)

13:09 問題解説(3)

16:52 まとめ

17:21 問題と答え

単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) |$x$| + |$x-2$| $\lt x + 1$

(2)次の連立不等式を満たす整数$x$がちょうど3個存在するような定数$a$の値の
  範囲を求めよ。
  $\begin{eqnarray}
\begin{cases}
5x - 2 \gt 3x …①\\
x-a \lt 0 …②
\end{cases}
\end{eqnarray}$

(3) $ax + a \lt a^2 + x$ 解け。ただし、$a$は定数とする。
投稿日:2020.07.02

<関連動画>

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[3]。三角比と図形の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第1問\ [3] 外接円の半径が3である$\triangle ABC$を考える。点Aから直線BCへ引いた垂線と直線BC
との交点をDとする。

(1)$AB=5, AC=4$とする。このとき$\sin\angle ABC=\frac{\boxed{ソ}}{\boxed{タ}}, AD=\frac{\boxed{チツ}}{\boxed{テ}}$ である。

(2) 2辺AB,ACの長さの間に$2AB+AC=14$の関係があるとする。
このとき、ABの長さの取り得る値の範囲は$\boxed{ト} \leqq AB \leqq \boxed{ナ}$であり、
$AD=\frac{\boxed{ニヌ}}{\boxed{ネ}}AB^2+\frac{\boxed{ノ}}{\boxed{ハ}}AB$と表せるので、ADの長さの最大値は$\boxed{ヒ}$である。

2022共通テスト数学過去問
この動画を見る 

福田の数学〜立教大学2022年経済学部第1問(2)〜絶対の付いた方程式の解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$|X-|X-2||=1$の解をすべて求めよ

2022立教大学経済学部過去問
この動画を見る 

東大数学科卒AKITO初登場 最大公約数のポイント

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{32}+1$と$2^{16}+1$の最大公約数は?

(1)$n^2$と$2n+1$は互いに素であることを示せ.
(2)$n^2+2$が$2n+1$の倍数となる$n$は?
この動画を見る 

2023高校入試解説40問目 球の切り口 早稲田実業(改)

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
3点P,Q,Rを通る平面で球Oを切ったとき、切り口の円の半径=?
*3点P,Q,Rは、AHを直径とする球面上
*図は動画内参照

2023早稲田実業学校
この動画を見る 

sin cos

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$sin{0^{\circ}}=$
$sin{90^{\circ}}=$
$sin{180^{\circ}}=$
$sin{270^{\circ}}=$
$cos{0^{\circ}}=$
$cos{90^{\circ}}=$
$cos{180^{\circ}}=$
$cos{270^{\circ}}=$
この動画を見る 
PAGE TOP