【高校数学】組合わせの性質の証明 1-10.5【数学A】 - 質問解決D.B.(データベース)

【高校数学】組合わせの性質の証明 1-10.5【数学A】

問題文全文(内容文):
組合わせの性質の証明についての説明動画です
チャプター:

00:00 はじまり

00:40 性質の証明のコツ

01:02 性質1つ目の証明

03:14 性質2つ目の証明

10:25 性質2の意味すること

12:50 まとめ

単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
組合わせの性質の証明についての説明動画です
投稿日:2020.06.02

<関連動画>

福田の数学〜神戸大学2024年理系第3問〜さいころの目と約数に関する確率

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$を小さい順に3つ求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$を小さい順に3つ求めよ。
(3)1個のサイコロを3回投げて出た目の積が160の約数となる確率を求めよ。
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第4問〜場合の数と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ $n,k$を$2$以上の自然数とする。$n$個の箱の中に$k$個の玉を無作為に入れ、各箱に入った玉の
個数を数える。その最大値と最小値の差がlとなる確率を$P_l(0 \leqq l \leqq k)$とする。
(1)$n=2,$ $k=3$のとき、$P_0,P_1,P_2,P_3$を求めよ。

(2)$n \geqq 2,$ $k=2$のとき、$P_0,P_1,P_2$を求めよ。

(3)$n \geqq 3,$ $k=3$のとき、$P_0,P_1,P_2,P_3$を求めよ。

2021早稲田大学理工学部過去問
この動画を見る 

大阪医科大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#大阪医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
黒石3個と白石7個を一列に並べる。
この列が、「2つ以上の連続した白石の両端に黒石がある」という部分を含む確率は?

大阪医科大過去問
この動画を見る 

福田のおもしろ数学160〜星のカピイは能力を何個持てるか

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
星のカピイは敵の能力をコピーできます。2つの能力を組み合わせて別の能力にすることもできます。(同じ能力を組み合わせることも可能)能力は全部で12種類あります。さてカピイは何個の能力を使うことができるでしょう。
この動画を見る 

福田の数学〜反復試行の確率問題の練習に最適な問題〜慶應義塾大学2023年商学部第4問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
太郎は 15 個の球を、花子は幻個の球を持っている。による球のやり取りを 2 人の間で繰り返す。こから始めて、次の手順による球のやり取りを 2 人の間で繰り返す。
【1】 2 個のさいころを同時に投げる。
【 2 】① 2 個とも奇数の目が出たら、太郎が花子に 1 個の球を渡す。
   ② 2 個とも偶数の目が出たら、太郎が花子に 2 個の球を渡す。
   ③奇数の目と偶数の目 1 個ずつ出たら、花子が太郎に 3 個の球を渡す。
この手順【1】,【 2 】によるやり取りを、 7 回繰り返す。その結果、太郎と花子の持つ球の個数について、以下の間いに答えなさい。
( 1 )太郎と花子が同数の球を持っている確率は$\dfrac{\fbox{アイウ}}{\fbox{エオカキ}}$である。
( 2 )持っている球の数が、太郎と花子の 2 人とも最初と変わらない確率は$\dfrac{\fbox{クケコ}}{\fbox{サシスセ}}$である。
( 3 )太郎の持っている球の数が、花子の持っている球の数の半分である確率は$\dfrac{\fbox{ソタチ}}{\fbox{ツテトナ}}$である。

2023慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP