7の2024乗の下4桁 - 質問解決D.B.(データベース)

7の2024乗の下4桁

問題文全文(内容文):
$7^{2024}$の下4桁の数
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7^{2024}$の下4桁の数
投稿日:2023.12.07

<関連動画>

福田の数学〜慶應義塾大学2022年薬学部第2問〜二項定理と数列の部分和

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$の初項から第n項までの和$S_n$、数列$\left\{b_n\right\}$の初項から第n項までの和$T_n$
はそれぞれ
$S_n=\sum_{k=1}^n {}_n \mathrm{ C }_k, T_n=\sum_{k=1}^n k・{}_n \mathrm{ C }_k$
で表される。
(1)$x \gt y \geqq 1$を満たす自然数x,yについて、
${}_x \mathrm{ C }_y={}_{x-1} \mathrm{ C }_y+{}_i \mathrm{ C }_j, y・{}_x \mathrm{ C }_y=x・{}_p \mathrm{ C }_q,$
が成り立つ。i,j,p,qをそれぞれx,yを用いて表すと、$i=\boxed{\ \ ス\ \ },j=\boxed{\ \ セ\ \ },$
$p=\boxed{\ \ ソ\ \ },q=\boxed{\ \ タ\ \ }$である。
(2)$a_2,b_4$の値をそれぞれ求めると$a_2=\boxed{\ \ チ\ \ },b_4=\boxed{\ \ ツ\ \ }$である。
(3)$S_n,a_n$をそれぞれnの式で表すと、$S_n=\boxed{\ \ テ\ \ },a_n=\boxed{\ \ ト\ \ }$である。
(4)$b_n$をnの式で表すと、$b_n=\boxed{\ \ ナ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

【数Ⅱ】【式と証明】二項定理の活用 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の□に入る数を,二項定理を用いて求めよ。
${}_{101} \mathrm{ C }_0+{}_{101} \mathrm{ C }_2+{}_{101} \mathrm{ C }_4+…$$…+{}_{101} \mathrm{ C }_{98}+{}_{101} \mathrm{ C }_{100}=2^□$

二項定理を用いて,次のことを証明せよ。
ただし,nは3以上の整数とする。

(1)$(1+\dfrac{1}{n})^n>2$

(2) x>0 のとき $(1+x)^n>1+nx+\dfrac{n(n-1)}{2}x^2$




この動画を見る 

変わった不等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ
$log_5\sqrt{ x^2-4x+29 }+\sqrt{ x^2-4x+8 } \leqq 3$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題014〜東京大学2016年度理系数学第1問〜eの定義と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
eを自然対数の底、すなわち$e=\lim_{t \to \infty}\left(1+\frac{1}{t}\right)^t$とする。
すべての正の実数xに対し、次の不等式が成り立つことを示せ。
$\left(1+\frac{1}{x}\right)^x \lt e \lt \left(1+\frac{1}{x}\right)^{x+\frac{1}{2}}$

2016東京大学理系過去問
この動画を見る 

2020年問題 数2Bまでの知識で解けます

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(45+\sqrt{ 2020 })^{2020}$の整数部分の下2ケタを求めよ
この動画を見る 
PAGE TOP