イラン数学オリンピック 整数問題 - 質問解決D.B.(データベース)

イラン数学オリンピック 整数問題

問題文全文(内容文):
Pが5以上の素数ならば,$7^P-6^P-1$は43の倍数であることを示せ.

イラン数学オリンピック過去問
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pが5以上の素数ならば,$7^P-6^P-1$は43の倍数であることを示せ.

イラン数学オリンピック過去問
投稿日:2022.09.07

<関連動画>

福田のおもしろ数学018〜1分以内に証明できたら天才〜不等式が常に成り立つ証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
どんなxに対しても次の方程式が成り立つことを証明せよ。
$x^{16}-x+1\gt 0$
この動画を見る 

ネイピア数eを用いた相加相乗平均の驚愕証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
ネイピア数eを用いた相加相乗平均の驚愕証明に関して解説していきます.
この動画を見る 

聖マリアンナ医大 Σ4乗以上の公式証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$\displaystyle \sum_{k=1}^{n}k^3=\left[\dfrac{n(n+1)}{2}\right]$を示せ.
②$(k+1)^5-k^5=5k^4+10k^3+10k^2+5k+1$を利用して
 $\displaystyle \sum_{k=1}^{n}k^4$は$n$の5次式で表せることを示せ.
③$\displaystyle \sum_{k=1}^n k^d$は$n$の$(d+1)$次式で表せることを示せ.

2019聖マリアンナ医大過去問
この動画を見る 

ただの整式の割り算

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(3x^3-4x^2+10x+4)^2$を$x^2-2x+4$で割ったあまりを求めよ.$


この動画を見る 

福田の1.5倍速演習〜合格する重要問題082〜北海道大学2018年度理系第5問〜不等式の証明と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 2つの関数
f(x)=$\cos x$, g(x)=$\displaystyle\sqrt{\frac{\pi^2}{2}-x^2-\frac{\pi}{2}}$
がある。
(1)0≦x≦$\frac{\pi}{2}$のとき、不等式$\frac{2}{\pi}x$≦$\sin x$が成り立つことを示せ。
(2)0≦x≦$\frac{\pi}{2}$のとき、不等式g(x)≦f(x)が成り立つことを示せ。
(3)0≦x≦$\frac{\pi}{2}$の範囲において、2つの曲線y=f(x), y=g(x)およびy軸が囲む部分の面積を求めよ。

2018北海道大学理系過去問
この動画を見る 
PAGE TOP