【数Ⅰ】【数と式】1次不等式の利用1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【数と式】1次不等式の利用1 ※問題文は概要欄

問題文全文(内容文):
次のものを求めよ。
(1)不等式5(x-3)<-2(x-14)を満たす最大の整数x
(2)不等式x/2+4/3≧x-2/3を満たす自然数xの個数

不等式2x-3>a+8xについて、次の問いに答えよ。
(1)解がx<1となるように、定数aの値を定めよ。
(2)解がx=0を含むように、定数aの値の範囲を定めよ。
(3)この不等式を満たすxのうち、最大の整数が0となるように、定数aの値の範囲を定めよ。

aを定数とするとき、次の方程式、不等式を解け。
(1)ax=1
(2)ax≦2
(3)ax+6>3x+2a
チャプター:

0:00 オープニング
0:04 1(問題1)下準備
0:46 具体例(飛ばしてもOK)
3:21 1(問題1)の(1)(2)
6:36 1(問題1)の(3)
7:36 2(問題2)下準備
9:48 2(問題2)の(1)(2)

単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のものを求めよ。
(1)不等式5(x-3)<-2(x-14)を満たす最大の整数x
(2)不等式x/2+4/3≧x-2/3を満たす自然数xの個数

不等式2x-3>a+8xについて、次の問いに答えよ。
(1)解がx<1となるように、定数aの値を定めよ。
(2)解がx=0を含むように、定数aの値の範囲を定めよ。
(3)この不等式を満たすxのうち、最大の整数が0となるように、定数aの値の範囲を定めよ。

aを定数とするとき、次の方程式、不等式を解け。
(1)ax=1
(2)ax≦2
(3)ax+6>3x+2a
投稿日:2024.11.27

<関連動画>

サクサク解こう

アイキャッチ画像
単元: #平方根#数と式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x \geqq 0,y \geqq 0$とする.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x\sqrt x+y\sqrt y=19 \\
x\sqrt y+y\sqrt x=15
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

【数Ⅰ】【データの分析】変量変換1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
変量xのデータの平均値$\bar{x}$が35、分散$S_{x}^2$が16であるとする。この時、次の式によって得られる新しい変量yのデータについて、平均$\bar{y}$,分散$S_{y}^2$,標準偏差$S_{y}$を求めよ。
(1)$y=x-10$
(2)$y=3x$
(3)$y=-\frac{1}{2}x+6$

あるクラスの生徒を対象に100点満点の試験を行ったところ,平均値は68点,分散は36であった。得点調整のため,生徒全員の得点を2.5倍して,更に30点を加えたとき,得点調整後の平均値,分散,標準偏差を求めよ。
この動画を見る 

福田の一夜漬け数学〜ルート計算のコツ(1)〜有理化と二重根号

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の分数を有理化せよ。
$\frac{\sqrt2+\sqrt3-\sqrt5}{\sqrt2-\sqrt3+\sqrt5}$

$\frac{\sqrt2+\sqrt5+\sqrt7}{\sqrt2+\sqrt5-\sqrt7}+\frac{\sqrt2-\sqrt5+\sqrt7}{\sqrt2-\sqrt5-\sqrt7}$

以下の2重根号を外し、最も簡単な数で表せ。
$\sqrt{4+2\sqrt3}$

$\sqrt{5-2\sqrt6}$

$\sqrt{5+\sqrt{24}}$

$\sqrt{4+\sqrt7}$

$\sqrt{10+5\sqrt3}$
この動画を見る 

因数分解 大垣日大 (岐阜)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$(x+y)(x+y+2)-8$

大垣日本大学高等学校
この動画を見る 

【数Ⅰ】【集合と論証】集合:ベン図を利用した問題 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#集合と命題#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$U=\{1,2,3,4,5,6,7,8,9\}$を全体集合とする。$U$の部分集合$A,B$について
$A∩B=\{2\}$ $\overline{A}∩B=\{4,6,8\}$ $ \overline{A}∩\overline{B}=\{1,9\}$
であるとき、次の∩を求めよ。
(1)$A∪B$
(2)$B$
(3)$A∩\overline{B}$

$U=\{x|1≦x≦10、xは整数\}$を全体集合とする。$U$の部分集合
$A=\{1,2,3,4,8\} B=\{3,4,5,6\} C=\{2,3,6,7\}$
について、次の集合を求めよ。
(1)$A∩B∩C$
(2)$A∪B∪C$
(3)$A∩B∩\overline{C}$
(4)$\overline{A}∩B∩\overline{C}$
(5)$\overline{(A∩B∩C)}$
(6)$(A∪C)∩\overline{B}$

$A=\{1,3,3a-2\}$  $B=\{-5、a+2、a^2-2a+1\}$ $A∩B=\{1,4\}$のとき
定数$a$の値と和集合$A∪B$を求めよ。
この動画を見る 
PAGE TOP