2021北海道大 連立漸化式 - 質問解決D.B.(データベース)

2021北海道大 連立漸化式

問題文全文(内容文):
$a_1=2,b_1=1$
$c_n=a_nb_n$
$a_{n+1}=2a_n+3b_n$
$b_{n+1}=a_n+2b_n$
①$c_2$
②$c_n$は偶数
③$n$が偶数なら$c_n$は28の倍数であることを示せ.

2021北海道大過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=2,b_1=1$
$c_n=a_nb_n$
$a_{n+1}=2a_n+3b_n$
$b_{n+1}=a_n+2b_n$
①$c_2$
②$c_n$は偶数
③$n$が偶数なら$c_n$は28の倍数であることを示せ.

2021北海道大過去問
投稿日:2021.02.28

<関連動画>

【数B】数列:部分分数分解の基本! 次の和S[n]を求めよ。S[n]=1/(1×5)+1/(5×9)+1/(9×13)+...+1/(4n-3)(4n+1)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の和$S_n$を求めよ。
$S_n=\dfrac{1}{1・5}+\dfrac{1}{5・9}+\dfrac{1}{9・13}+...+\dfrac{1}{(4n-3)(4n-1)}$
この動画を見る 

【暗記じゃない…!】数列:興南高等学校~全国入試問題解法

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
1/1,1/2,2/2,1/3,2/3,3/3,1/4,2/4,3/4,4/4,・・・
の時、左から85番目の分数?
この動画を見る 

宇都宮大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#宇都宮大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$
$a_{n}=-2S_{n}S_{n-1}$
$(n=2,3…)$

(1)
$a_{2},a_{3}$を求めよ

(2)
$0 \lt S_{n} \leqq 1$を示せ

(3)
$a_{n}$を求めよ

出典:2008年宇都宮大学 過去問
この動画を見る 

百マス計算全部出したらなんぼ?

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
「百マス計算全部出したらいくつか」について解説しています。
この動画を見る 

福田の数学〜京都大学2022年文系第2問〜条件を満たす経路の総数と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
下図(※動画参照)の三角柱ABC-DEFにおいて、Aを始点として、辺に沿って
頂点をn回移動する。すなわち、この移動経路
$P_0 \to P_1 \to P_2 \to \ldots \to P_{n-1} \to P_n$ (ただし$P_0=A$)
において、$P_0P_1,P_1P_2,\ldots,P_{n-1}P_n$は全て辺であるとする。
また、同じ頂点を何度通ってよいものとする。このような移動経路で、終点$P_n$がA,B,Cの
いずれかとなるものの総数$a_n$を求めよ。

2022京都大学文系過去問
この動画を見る 
PAGE TOP