【数B】ベクトル:正射影ベクトルの仕組みと使い方 - 質問解決D.B.(データベース)

【数B】ベクトル:正射影ベクトルの仕組みと使い方

問題文全文(内容文):
正射影ベクトルについて解説します!
チャプター:

0:00 OP
0:24 正射影ベクトルの考え方
0:52 正射影ベクトルの使い方

単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
正射影ベクトルについて解説します!
投稿日:2021.08.17

<関連動画>

【数B】ベクトル:ベクトルの基本⑦内積を求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a=\sqrt3,b=5,a-b=\sqrt5$のとき、内積a・bを求めよ.
この動画を見る 

【数B】ベクトル:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四角形OABCは、$OB+3BC=2AB$を満たしている。また、辺OAを2:1に内分する点を Dとし、$a=OA、c=OC$とする。
(1)OBをa,cを用いて表せ。
(2)2直線$OB,CD$の交点をP とする。$OPwpa,c$を用いて表せ。また、$CP:PD$を求めよ。
(3)$OA=3、OB=\sqrt{15},OC=4$ とする。(i)内積a・cの値を求めよ。(ii)四角形OABCに、CとDが重なるように折 り目を付け、再び広げて四角形に戻す。折り目の直線lと直線OCの公転をNとする とき、$ON:NC$を求めよ。また、3直線$OB,OC,l$で囲まれてできる三角形の面積を求 めよ。
この動画を見る 

【数C】平面ベクトル:2020年高2第2回駿台全国模試第7問解説してみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#駿台模試#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Oを中心とする半径1の円に内接する四角形ABCDについて、次の条件(I)(II)を考える。
(I)AO=-17/2*AB+5AC (II)OA・OC=OA・OD また、θ=∠AOCとする。次の問いに答えよう。
(1)内積OA・OCをθを用いて表そう。
(2)(I)が成り立つとき、(i)OBをOAとOCを用いて表そう。(ii)cosθの値を求めよう。
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第2問〜位置ベクトルと面積比

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面上に三角形ABCと点Pがあり、点Pは、ある正の定数tに対して
$3t\overrightarrow{ AP }+t^2\overrightarrow{ BP }+4\overrightarrow{ CP }=\overrightarrow{ 0 }$
を満たすとする。
$\overrightarrow{ b } =\overrightarrow{ AB },\overrightarrow{ c } =\overrightarrow{ AC }$とおく。
(1)$\overrightarrow{ BP }$を、$\overrightarrow{ b }$と$\overrightarrow{ AP }$を用いて表せ。
(2)$\overrightarrow{ AP }=v\ \overrightarrow{ b }+w\ \overrightarrow{ c }$となる実数v,wを、tを用いて表せ。
(3)直線APと直線BCの交点をDとする。
$\overrightarrow{ AD }=x\ \overrightarrow{ b }+y\ \overrightarrow{ c }$となる実数x,yを、tを用いて表せ。
(4)$\frac{S_2}{S_1}$を、tを用いて表せ。
(5)tが正の実数全体を動くとき、$\frac{S_2}{S_1}$が最大となるtの値を求めよ。

2022東京理科大学理工学部過去問
この動画を見る 

福田の数学〜大阪大学2023年理系第2問〜ベクトルと領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の3点O,A,Bが
|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$+2$\overrightarrow{OB}$|=1 かつ (2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+$\overrightarrow{OB}$)=$\displaystyle\frac{1}{3}$
を満たすとする。
(1)(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+2$\overrightarrow{OB}$)を求めよ。
(2)平面上の点Pが
|$\overrightarrow{OP}$ー($\overrightarrow{OA}$+$\overrightarrow{OB}$)|≦$\frac{1}{3}$ かつ $\overrightarrow{OP}$・(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)≦$\frac{1}{3}$
を満たすように動くとき、|$\overrightarrow{OP}$|の最大値と最小値を求めよ。

2023大阪大学理系過去問
この動画を見る 
PAGE TOP