【数Ⅱ】複素数と方程式:2x²-6x-3=0の解がα、βのとき、①β²/α+α²/β②(2α²-6α-5)(2β²-6β-1)の値を求めよ。 - 質問解決D.B.(データベース)

【数Ⅱ】複素数と方程式:2x²-6x-3=0の解がα、βのとき、①β²/α+α²/β②(2α²-6α-5)(2β²-6β-1)の値を求めよ。

問題文全文(内容文):
$2x^2-6x-3=0$の解が$\alpha,\beta$のとき、
①$\dfrac{\beta^2}{\alpha}+\dfrac{\alpha^2}{\beta}
②$(2\alpha^2-6\alpha-5)(2\beta^2-6\beta-1)$の値を求めよ。

チャプター:

0:00 オープニング
0:27 ①の解説(サクッと)
2:06 ②の解説(メインよ!!)

単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$2x^2-6x-3=0$の解が$\alpha,\beta$のとき、
①$\dfrac{\beta^2}{\alpha}+\dfrac{\alpha^2}{\beta}
②$(2\alpha^2-6\alpha-5)(2\beta^2-6\beta-1)$の値を求めよ。

投稿日:2021.01.09

<関連動画>

慶応義塾大 3次方程式(補)共役の複素数は解となることを示せ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$実数
$x^3+ax^2-3x+10=0$の1つの解は$x=2-i$
$a$の値と実数解を求めよ。

※$n$次方程式$(n \geqq 4)$で$m+ni(n \neq 0)$が解なら$m-ni$も解であることを示せ

出典:2009年慶應義塾 過去問
この動画を見る 

#10数検準1級1次 複素数

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$z=-2-i$の偏角を$\theta$とする.
$\sin4\theta$の値を求めよ.
この動画を見る 

式の値 基本

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{a}{a^2+5a+1}=5$のとき,
$\dfrac{a^2}{a^4+5a^2+1}=?$
これを解け.
この動画を見る 

慶應義塾 解と係数の関係・対数方程式 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#解と判別式・解と係数の関係#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題

[1]$ x ^ 2 - x + 1 = 0$ の解をα、$x^2+x-1=0$の解をβとする。
(1)$α^n=1$となる最小のnを求めよ。
(2)αβは、$x^4+▢x^3+▢x^2+▢x+▢=0$の解である。
(3)上記の4次方程式の4つの解の平方の和 を求めよ。

[2]以下の連立方程式を解け、
\begin{eqnarray}
\left\{
\begin{array}{l}
log_2(x + y) + log_2(1 - x) = 0 \\
y = - x ^ 2 + 4x + 1
\end{array}
\right.
\end{eqnarray}

・Q 慶應大学医学部の初代医学部長は は何を発見したことで有名か?
この動画を見る 

九州大 虚数解を持つ3次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+x^2-x+a=0$は絶対値が1である虚数解をもつ.
実数$a$の値と3つの解を求めよ.

1964九州大(文系)過去問
この動画を見る 
PAGE TOP