ざ・見掛け倒し - 質問解決D.B.(データベース)

ざ・見掛け倒し

問題文全文(内容文):
$\displaystyle \sum_{n=1}^{2022}n^{2022}=$
$1^{2022}+2^{2022}+3^{2022}+$
$・・・・・・+2021^{2022}+2022^{2022}$を13で割った余りを求めよ.
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{2022}n^{2022}=$
$1^{2022}+2^{2022}+3^{2022}+$
$・・・・・・+2021^{2022}+2022^{2022}$を13で割った余りを求めよ.
投稿日:2022.03.26

<関連動画>

変な数学的帰納法 n個の相加相乗平均

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n \gt 0$とする.
$\dfrac{a_1+a_2+・・・・+a_n}{n} \geqq \sqrt[n]{a_1a_2・・・・a_n}$を示せ.
この動画を見る 

質問に対する返答です。整数問題,数列の和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1 \leqq t< u < v \leqq 6m$
$t+u+v=6m$
この動画を見る 

【高校数学】 数B-74 和の記号Σ(シグマ)③

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の数列の第$k$項,および初項から第$n$項までの和を求めよう.

①$3^2,6^2,9^2,・・・$

②$2・2,4・5,6・8,・・・$

③$1,1+2,1+2+3,・・・$
この動画を見る 

2022藤田医科大 等差数列の超基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
公差が0でない整数の等差数列$a_n$がある
$\sum_{ }^{ } a_n$はn=7で
最大値119 $a_n$を求めよ。

藤田医学科大学
この動画を見る 

福田の数学〜無限級数の和は部分和の極限〜明治大学2023年全学部統一Ⅲ第1問(1)〜無限級数の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
無限級数

$\displaystyle \sum_{n=1}^{\infty} \log \frac{(n+1)(n+2)}{n(n+3)}$

の和を求めよ。

2023明治大学過去問
この動画を見る 
PAGE TOP