整数問題 慶應義塾大 - 質問解決D.B.(データベース)

整数問題 慶應義塾大

問題文全文(内容文):
$a,b,c,d$は自然数である.これを解け.
$a^3=b^2,c^3=d^2,c-a=9$

2020慶應大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$は自然数である.これを解け.
$a^3=b^2,c^3=d^2,c-a=9$

2020慶應大過去問
投稿日:2020.04.17

<関連動画>

【数A】整数の性質:○○でないの証明は背理法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
pが素数のとき、$1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{p}$は整数でないことを証明しよう。
この動画を見る 

整数の良問だよ!やや難?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は非負整数である.
$a!+5^b=7^c$を満たす$(a,b,c)$をすべて求めよ.
この動画を見る 

素数にならないのはなぜ? 洛星

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$N=n^2+n+40$のnにどのような自然数を代入してもNは素数にはならない。
なぜ?

洛星高等学校(改)
この動画を見る 

一橋大 整数問題 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
一橋大学過去問題
(1)$n^3+1$が3で割り切れるnをすべて求めよ。
(2)$n^n+1$が3で割り切れるnをすべて求めよ。
(1)(2)ともにnは自然数
この動画を見る 

大学入試だけど、中学生も解ける!!(東京理科大)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
ある2桁の正の整数mを2乗すると下2桁が36になるとき、
m=?

東京理科大学
この動画を見る 
PAGE TOP