整数問題 慶應義塾大 - 質問解決D.B.(データベース)

整数問題 慶應義塾大

問題文全文(内容文):
$a,b,c,d$は自然数である.これを解け.
$a^3=b^2,c^3=d^2,c-a=9$

2020慶應大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$は自然数である.これを解け.
$a^3=b^2,c^3=d^2,c-a=9$

2020慶應大過去問
投稿日:2020.04.17

<関連動画>

電卓アプリで遊んでみた

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数であるとする。
$N=1^n+2^n+3^n+・・・・・・+2024^n$
$N$が8の倍数となる$n$の条件を求めよ。
この動画を見る 

京都工芸繊維大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$m^{m-1}+1$を$8$で割った余りを求めよ.
(1)$m$が偶数のとき
(2)$m$が奇数のとき

2021京都工芸大過去問
この動画を見る 

ざ・見掛け倒し

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \displaystyle \sum_{n=1}^{2022} n^{2022}$
$ =1^{2022}+2^{2022}+3^{2022}+・・・・・・$
$+2021^{2022}+2022^{2022}$
を13で割った余りを求めよ.
この動画を見る 

整数問題 須磨学園(改) 2022年入試問題100問解説の53問目

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2+6xy+10y^2+6y=9$を満たす整数の組(x,y)をすべて求めよ。

2022須磨学園高等学校
この動画を見る 

数学オリンピック予選 整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$自然数 $a \lt b$
$a$と$b$は互いに素
$a \times b=29!$を満たす$(a,b)$の組はいくつか求めよ

出典:数学オリンピック 予選問題
この動画を見る 
PAGE TOP