中2数学「1次関数の利用①(1あたりの量の問題)」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「1次関数の利用①(1あたりの量の問題)」【毎日配信】

問題文全文(内容文):
中2~1次関数の利用①~

例題
ある灯油を使う暖房機は、「強」と「弱」の強さがある。 それぞれの強さごとの灯油の消費量は、下の表である。
ある日、暖房機に9Lの灯油が入った状態から、はじめ は「強」、次に「弱」その後再び「強」で使用した。 下の図は、使用し始めてから父時間後の灯油の残り の量りしの関係をグラフに表したものです。

(1)使用してから四時間後の灯油の残り量を求めなさい。

(2) 4≦x≦8のとき、yをxの式で表しなさい。

(3)8≦x≦12のとき、yをxの式で表しなさい。
単元: #数学(中学生)#中2数学#1次関数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~1次関数の利用①~

例題
ある灯油を使う暖房機は、「強」と「弱」の強さがある。 それぞれの強さごとの灯油の消費量は、下の表である。
ある日、暖房機に9Lの灯油が入った状態から、はじめ は「強」、次に「弱」その後再び「強」で使用した。 下の図は、使用し始めてから父時間後の灯油の残り の量りしの関係をグラフに表したものです。

(1)使用してから四時間後の灯油の残り量を求めなさい。

(2) 4≦x≦8のとき、yをxの式で表しなさい。

(3)8≦x≦12のとき、yをxの式で表しなさい。
投稿日:2022.07.23

<関連動画>

【高校受験対策/数学】関数56

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数56

Q.
図のように、円の中心$O$と点$P$が直線$l$上にあり、円の$O$半径は10$cm$、$OP$間の距離は20$cm$である。
点$O$が固定されたまま、点$P$は毎秒3$cm$の速さで直線$l$上を図の矢印の向きに進み、出発してから10秒後に停止する。
点$P$が出発してから$x$秒後の$OP$間の距離を$y cm$として次の問いに答えなさい。

①点$P$が出発してから点$O$と重なるまでの間について、$y$を$x$の式で表しなさい。

②点$P$が点$O$と重なってから停止するまでの間について、$y$を$x$の式で表しなさい。

③点$P$が出発してから停止するまでの間において、点$P$が円$O$の周上または内部にある時間は何秒間か求めなさい。

④点$P$が出来するのと同時に、毎秒1$cm$の一定の割合で円の半径が小さくなり始め、点$P$が停止するまでの間、円$O$は中心が固定されたまま徐々に小さくなっていくものとする。
点$P$が出発してから停止するまでの間において、点$P$が円$O$の周上または内部にある時間は何秒間か求めなさい。
この動画を見る 

三平方の定理を使わずに解くこともできます

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#三平方の定理#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
この動画を見る 

こんな解き方あり!?

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【中学数学】この形の問題の裏技集 外角の二等分線
この動画を見る 

中2数学「三角形の合同証明②」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~三角形の合同証明②~

例1 下の図は△ABCの外側に辺AB、ACをそれぞれ1辺とする正三角形ABDと正三角形ACEをつくったものです。△ADC≡△ABEであることを証明しなさい。

※図は動画内参照
この動画を見る 

【高校受験対策/数学】死守-96

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#比例・反比例#確率#2次関数#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守96

①$7+2×(-6)$を計算せよ。
②$3(2a+b)-2(4a-5b)$を計算せよ。
③$\frac{14}{\sqrt2}-\sqrt32$を計算せよ。
④2次方程式$(x+6)(x-5)=9x-10$を解け。
⑤関数$y=\frac{1}{2}x^2$について、$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めよ。
⑥関数$y=\frac{ 6 }{ x }$のグラフをかけ。
⑦$△ABC$において、$\angle A=90°,AB=6cm,BC=10cm$のとき、辺$AC$の長さを求めよ。

⑧4枚の硬質A、B、C、Dを同時に投げるとき、少なくとも1枚は表が出る確率を求めよ。
ただし、表と裏が出ることは同様に確からしいとする。

⑨右図のように、円$0$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、$△ABC$をつくる。
線分$BO$を延長した直線と線分$AC$と交点を$D$とする。
$\angle BAC=48°$のとき$\angle ADB$の大きさを求めよ。
この動画を見る 
PAGE TOP