【高校数学】 数A-64 直線と平面③ - 質問解決D.B.(データベース)

【高校数学】 数A-64 直線と平面③

問題文全文(内容文):
正六面体の各面の対角線の交点を頂点とし,
隣り合う面どうしの頂点を結ぶことによって,
正六面体の中に正八面体ができる.
このとき、,次の場合について,正八面体の体積を求めよう.

①正六面体の1辺の長さが6

②正八面体の1辺の長さが6

図は動画内参照
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
正六面体の各面の対角線の交点を頂点とし,
隣り合う面どうしの頂点を結ぶことによって,
正六面体の中に正八面体ができる.
このとき、,次の場合について,正八面体の体積を求めよう.

①正六面体の1辺の長さが6

②正八面体の1辺の長さが6

図は動画内参照
投稿日:2016.05.21

<関連動画>

福田のおもしろ数学507〜三角形の面がm個ありどの頂点にも4本の辺が集まる多面体

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

ある凸多面体において、

三角形の面が$m$枚あり、

(他の形の面も含まれている可能性がある)

すべての頂点にはちょうど$4$枚の辺が集まって

いるとする。

このとき、$m$の最小値を求めて下さい。
    
この動画を見る 

福田のおもしろ数学034〜各面が合同な三角形でできた四面体の体積〜等面四面体

アイキャッチ画像
単元: #数学(中学生)#中3数学#数A#図形の性質#三平方の定理#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
どの面も、5,6,7の長さの三角形でできている四面体の体積を求めよ
この動画を見る 

【高校数学】 数A-63 直線と平面②

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
凸多面体の①の数をV,②の数をe,③の数を$f$とすると,
$v-e+f=2$が成り立つ.これを④定理という.

空間内の直線$l,m,n$や,平面$P,Q,R$について,
次の記述が正しいときは○,正しくないときは×で答えよう.

⑤$\ell \perp P,m\perp P$のとき,$\ell \perp m$である.

⑥$\ell /\!/ P,m/\!/ P$のとき,$\ell /\!/m$である.

⑦$P /\!/ \ell,Q /\!/ \ell$のとき,$P/\!/ Q$である.

⑧$P\perp Q,Q /\!/ R$のとき,$P\perp R$である.

⑨$\ell \perp m,m\perp n$のとき,$\ell /\!/ n$である.
この動画を見る 

【高校数学】立体の問題のポイント・重要公式集【コツさえつかめば怖くない!】

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【高校数学】立体の問題のポイント・重要公式集
-----------------
1⃣
球の中に正四面体ABCDが内接している。
正四面体ABCDの一辺の長さをaとし、球の半径をRとするとき、Rをaを用いて示しなさい。

2⃣
正四面体ABCDに球が内接している。
このとき、球の半径rをaを用いて表しなさい。
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第4問〜正八面体の内部に配置した6個の球の和集合の体積と共通部分の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$一辺の長さが$\sqrt3+1$である正八面体の頂点を右図(※動画参照)
のように$P_1,P_2,P_3,P_4,P_5,P_6$とする。$i=1,2,\ldots,6$に対して
$P_i$以外の5点を頂点とする四角錐のすべての面に
内接する球(内部含む)を$B_i$とする。$B_1$の体積をXとし、$B_1$と
$B_2$の共通部分の体積をYとし、$B_1,B_2,B_3$の共通部分の体積をZ
とする。さらに$B_1,B_2,\ldots,B_n$を合わせて得られる立体の体積を
$V_n\ \ (n=2,3,\ldots,6)$とする。以下の問いに答えよ。
(1)$V_n=aX+bY+cZ$となる整数a,b,cを$n=2,3,6$の場合
について求めよ。
(2)Xの値を求めよ。
(3)$V_2$の値を求めよ。

2022早稲田大学理工学部過去問
この動画を見る 
PAGE TOP