【数Ⅰ】2次関数:【難問】2変数関数の最大最小:本論 - 質問解決D.B.(データベース)

【数Ⅰ】2次関数:【難問】2変数関数の最大最小:本論

問題文全文(内容文):
$x^2-2xy+2y^2=2$ を満たすx,yについて
(2) 2x+yのとりうる値の最大値・最小値を求めよ。
チャプター:

0:00 導入
1:11 判別式を考える
1:57 kが最大・最小となるときのx,yをそれぞれ求める
2:47 √の中身は考える必要なし
4:09 解答
4:20 エンディング

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2-2xy+2y^2=2$ を満たすx,yについて
(2) 2x+yのとりうる値の最大値・最小値を求めよ。
投稿日:2023.02.19

<関連動画>

式の値と平方根

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x + y = 3 , xy = -1$
$x^2 -y^2 = ?$
($x>y$)

西部学園文理高等学校
この動画を見る 

図形問題にみえて実は〇〇問題 慶應義塾高校

アイキャッチ画像
単元: #数Ⅰ#数A#図形と計量#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
nは3以上の整数とする。
正n角形の1つの内角をx°とするときxの値が整数となる正n角形は何個?

慶應義塾高等学校
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(4)〜球面上の3点が作る三角形

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#円と方程式#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)座標空間に球面S:$(x-3)^2$+$(y+2)^2$+$(z-1)^2$=36 がある。球面Sが平面y=2 と交わってできる円をCとおく。
(i)円Cの中心の座標は$\boxed{\ \ ク\ \ }$であり、半径は$\boxed{\ \ ケ\ \ }$である。
(ii)円Cと平面x=3の交点をA,Bとし、AとB以外の球面S上の任意の点をPとする。三角形PABにおいて、辺PBを4:3に内分する点をD、線分ADを5:3に内分する点をMとし、直線PMと辺ABとの交点をEとする。このとき、AEの長さは$\boxed{\ \ コ\ \ }$である。ただし、Bのz座標はAのz座標よりも大きいとする。

2023慶應義塾大学薬学部過去問
この動画を見る 

【高校数学】  数Ⅰ-82  三角比⑦

アイキャッチ画像
単元: #数Ⅰ#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式のとりうる値の範囲を求めよう。

①$\cos \theta+2(0° \leqq \theta \leqq 180°)$

②$3\sin \theta-1(0° \leqq \theta \leqq 180°)$

③$\sqrt{ 2 }\sin \theta+3(45° \leqq \theta \leqq 120°)$

④$\sqrt{ 3 }\tan \theta-3(30° \leqq \theta \lt 60°)$
この動画を見る 

【わかりやすく】たすきがけを使う因数分解を解説!(高校数学Ⅰ)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を因数分解せよ。
(1)$6x^2+7x+2$
(2)$2x^2+x-6$
(3)$3x^2-10xy+8y^2$
この動画を見る 
PAGE TOP